Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cereb Cortex ; 32(16): 3568-3580, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34875029

RESUMO

Whether human and nonhuman primates process the temporal dimension of sound similarly remains an open question. We examined the brain basis for the processing of acoustic time windows in rhesus macaques using stimuli simulating the spectrotemporal complexity of vocalizations. We conducted functional magnetic resonance imaging in awake macaques to identify the functional anatomy of response patterns to different time windows. We then contrasted it against the responses to identical stimuli used previously in humans. Despite a similar overall pattern, ranging from the processing of shorter time windows in core areas to longer time windows in lateral belt and parabelt areas, monkeys exhibited lower sensitivity to longer time windows than humans. This difference in neuronal sensitivity might be explained by a specialization of the human brain for processing longer time windows in speech.


Assuntos
Córtex Auditivo , Estimulação Acústica/métodos , Animais , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Humanos , Macaca mulatta
2.
Neuroimage ; 244: 118615, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563680

RESUMO

Natural vision engages a wide range of higher-level regions that integrate visual information over the large-scale brain network. How interareal connectivity reconfigures during the processing of ongoing natural visual scenes and how these dynamic functional changes relate to the underlaying anatomical links between regions is not well understood. Here, we hypothesized that macaque visual brain regions are poly-functional sharing the capacity to change their configuration state depending on the nature of visual input. To address this hypothesis, we reconstructed networks from in-vivo diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI) data obtained in four alert macaque monkeys viewing naturalistic movie scenes. At first, we characterized network properties and found greater interhemispheric density and greater inter-subject variability in free-viewing networks as compared to structural networks. From the structural connectivity, we then captured modules on which we identified hubs during free-viewing that formed a widespread visuo-saccadic network across frontal (FEF, 46v), parietal (LIP, Tpt), and occipitotemporal modules (MT, V4, TEm), and that excluded primary visual cortex. Inter-subject variability of well-connected hubs reflected subject-specific configurations that largely recruited occipito-parietal and frontal modules. Across the cerebral hemispheres, free-viewing networks showed higher correlations among long-distance brain regions as compared to structural networks. From these findings, we hypothesized that long-distance interareal connectivity could reconfigure depending on the ongoing changes in visual scenes. Testing this hypothesis by applying temporally resolved functional connectivity we observed that many structurally defined areas (such as areas V4, MT/MST and LIP) were poly-functional as they were recruited as hub members of multiple network states that changed during the presentation of scenes containing objects, motion, faces, and actions. We suggest that functional flexibility in macaque macroscale brain networks is required for the efficient interareal communication during active natural vision. To further promote the use of naturalistic free-viewing paradigms and increase the development of macaque neuroimaging resources, we share our datasets in the PRIME-DE consortium.


Assuntos
Mapeamento Encefálico/métodos , Córtex Visual/diagnóstico por imagem , Animais , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Feminino , Macaca , Imageamento por Ressonância Magnética , Estimulação Luminosa
3.
Neuroimage ; 230: 117778, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33497775

RESUMO

Information from Magnetic Resonance Imaging (MRI) is useful for diagnosis and treatment management of human neurological patients. MRI monitoring might also prove useful for non-human animals involved in neuroscience research provided that MRI is available and feasible and that there are no MRI contra-indications precluding scanning. However, MRI monitoring is not established in macaques and a resource is urgently needed that could grow with scientific community contributions. Here we show the utility and potential benefits of MRI-based monitoring in a few diverse cases with macaque monkeys. We also establish a PRIMatE MRI Monitoring (PRIME-MRM) resource within the PRIMatE Data Exchange (PRIME-DE) and quantitatively compare the cases to normative information drawn from MRI data from typical macaques in PRIME-DE. In the cases, the monkeys presented with no or mild/moderate clinical signs, were well otherwise and MRI scanning did not present a significant increase in welfare impact. Therefore, they were identified as suitable candidates for clinical investigation, MRI-based monitoring and treatment. For each case, we show MRI quantification of internal controls in relation to treatment steps and comparisons with normative data in typical monkeys drawn from PRIME-DE. We found that MRI assists in precise and early diagnosis of cerebral events and can be useful for visualising, treating and quantifying treatment response. The scientific community could now grow the PRIME-MRM resource with other cases and larger samples to further assess and increase the evidence base on the benefits of MRI monitoring of primates, complementing the animals' clinical monitoring and treatment regime.


Assuntos
Encéfalo/diagnóstico por imagem , Análise de Dados , Imageamento por Ressonância Magnética/métodos , Doenças do Sistema Nervoso/diagnóstico por imagem , Animais , Estudos de Casos e Controles , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/terapia , Infecções/diagnóstico por imagem , Infecções/terapia , Macaca mulatta , Masculino , Debilidade Muscular/diagnóstico por imagem , Debilidade Muscular/terapia , Doenças do Sistema Nervoso/terapia
4.
PLoS Biol ; 15(5): e2001379, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28472038

RESUMO

This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI). We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream.


Assuntos
Córtex Auditivo/fisiologia , Localização de Som/fisiologia , Animais , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Percepção de Movimento/fisiologia
5.
Curr Res Neurobiol ; 4: 100087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397814

RESUMO

Developing optogenetic methods for research in non-human primates (NHP) is important for translational neuroscience and for delineating brain function with unprecedented specificity. Here we assess, in macaque monkeys, the selectivity by which optogenetic stimulation of the primary visual cortex (V1) drives the local laminar and widespread cortical connectivity related to visual perception. Towards this end, we transfected neurons with light-sensitive channelrhodopsin in dorsal V1. fMRI revealed that optogenetic stimulation of V1 using blue light at 40 Hz increased functional activity in the visual association cortex, including areas V2/V3, V4, motion-sensitive area MT and frontal eye fields, although nonspecific heating and eye movement contributions to this effect could not be ruled out. Neurophysiology and immunohistochemistry analyses confirmed optogenetic modulation of spiking activity and opsin expression with the strongest expression in layer 4-B in V1. Stimulating this pathway during a perceptual decision task effectively elicited a phosphene percept in the receptive field of the stimulated neurons in one monkey. Taken together, our findings demonstrate the great potential of optogenetic methods to drive the large-scale cortical circuits of the primate brain with high functional and spatial specificity.

6.
Cell Rep ; 35(11): 109242, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133935

RESUMO

Figure-ground segregation, the brain's ability to group related features into stable perceptual entities, is crucial for auditory perception in noisy environments. The neuronal mechanisms for this process are poorly understood in the auditory system. Here, we report figure-ground modulation of multi-unit activity (MUA) in the primary and non-primary auditory cortex of rhesus macaques. Across both regions, MUA increases upon presentation of auditory figures, which consist of coherent chord sequences. We show increased activity even in the absence of any perceptual decision, suggesting that neural mechanisms for perceptual grouping are, to some extent, independent of behavioral demands. Furthermore, we demonstrate differences in figure encoding between more anterior and more posterior regions; perceptual saliency is represented in anterior cortical fields only. Our results suggest an encoding of auditory figures from the earliest cortical stages by a rate code.


Assuntos
Córtex Auditivo/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Feminino , Macaca mulatta , Masculino , Atividade Motora/fisiologia , Processos Estocásticos
7.
Neuron ; 109(5): 852-868.e8, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33482086

RESUMO

Human brain pathways supporting language and declarative memory are thought to have differentiated substantially during evolution. However, cross-species comparisons are missing on site-specific effective connectivity between regions important for cognition. We harnessed functional imaging to visualize the effects of direct electrical brain stimulation in macaque monkeys and human neurosurgery patients. We discovered comparable effective connectivity between caudal auditory cortex and both ventro-lateral prefrontal cortex (VLPFC, including area 44) and parahippocampal cortex in both species. Human-specific differences were clearest in the form of stronger hemispheric lateralization effects. In humans, electrical tractography revealed remarkably rapid evoked potentials in VLPFC following auditory cortex stimulation and speech sounds drove VLPFC, consistent with prior evidence in monkeys of direct auditory cortex projections to homologous vocalization-responsive regions. The results identify a common effective connectivity signature in human and nonhuman primates, which from auditory cortex appears equally direct to VLPFC and indirect to the hippocampus. VIDEO ABSTRACT.


Assuntos
Lobo Frontal/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Animais , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Estimulação Elétrica , Feminino , Humanos , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Giro Para-Hipocampal/fisiologia , Córtex Pré-Frontal/fisiologia , Especificidade da Espécie , Adulto Jovem
8.
Nat Neurosci ; 23(5): 611-614, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32313267

RESUMO

The human arcuate fasciculus pathway is crucial for language, interconnecting posterior temporal and inferior frontal areas. Whether a monkey homolog exists is controversial and the nature of human-specific specialization unclear. Using monkey, ape and human auditory functional fields and diffusion-weighted MRI, we identified homologous pathways originating from the auditory cortex. This discovery establishes a primate auditory prototype for the arcuate fasciculus, reveals an earlier phylogenetic origin and illuminates its remarkable transformation.


Assuntos
Córtex Auditivo , Vias Auditivas , Evolução Biológica , Idioma , Animais , Imagem de Tensor de Difusão , Humanos , Macaca , Pan troglodytes
9.
J Neurosci Methods ; 308: 377-389, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232039

RESUMO

BACKGROUND: Neuroscientists commonly use permanently implanted headposts to stabilize the head of nonhuman primates (NHPs) during electrophysiology and functional magnetic resonance imaging (fMRI). Here, we present improved methodology for MRI-compatible implants without the use of acrylic for head stabilization in NHPs. NEW METHOD: MRI is used to obtain a 3D-reconstruction of NHP skulls, which are used to create customized implants by modeling intersections with the bone. Implants are manufactured from PEEK using computer numerical control machining and coated with hydroxyapatite to promote osseointegration. Surgically, implants are attached to the skull with ceramic screws, while the skin flap is pulled over the implant and closed subcutaneously. RESULTS: Quality of blood oxygen level dependent (BOLD) fMRI signal is improved in animals implanted with our method as compared to traditional acrylic implants. Additionally, implants are well-integrated with the skull, remain robust for more than a year and without granulation tissue around the skin margin. COMPARISON WITH EXISTING METHOD(S): Previous improvements on NHP implants (Chen et al., 2017; McAndrew et al., 2012; Mulliken et al., 2015; Overton et al., 2017) lacked fMRI-compatibility, as they relied on titanium headposts and/or titanium screws. Thus, most fMRI studies in NHPs today still rely on the use of acrylic-based headposts for stabilization and the use of contrast-enhanced agents to improve MRI signal. CONCLUSIONS: Our method preserves fMRI-compatibility and results in measurable improvement in BOLD signal without the use of contrast-enhanced agents. Furthermore, the long-term stability of our implants contributes positively to the wellbeing of NHPs in neuroscience research.


Assuntos
Implantes Experimentais , Imageamento por Ressonância Magnética/métodos , Crânio/diagnóstico por imagem , Crânio/cirurgia , Animais , Benzofenonas , Feminino , Imageamento Tridimensional , Cetonas , Macaca mulatta , Masculino , Osseointegração , Polietilenoglicóis , Polímeros , Crânio/fisiologia
10.
Sci Rep ; 8(1): 17948, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560879

RESUMO

Segregating the key features of the natural world within crowded visual or sound scenes is a critical aspect of everyday perception. The neurobiological bases for auditory figure-ground segregation are poorly understood. We demonstrate that macaques perceive an acoustic figure-ground stimulus with comparable performance to humans using a neural system that involves high-level auditory cortex, localised to the rostral belt and parabelt.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva , Estimulação Acústica , Animais , Comportamento Animal , Mapeamento Encefálico/métodos , Feminino , Processamento de Imagem Assistida por Computador , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Tempo de Reação
11.
Neuron ; 100(1): 61-74.e2, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30269990

RESUMO

Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets.


Assuntos
Encéfalo , Conjuntos de Dados como Assunto , Neuroimagem , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conectoma/métodos , Disseminação de Informação/métodos , Imageamento por Ressonância Magnética , Primatas
12.
J Neurosci Methods ; 269: 46-60, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27189889

RESUMO

BACKGROUND: Head immobilisation is often necessary for neuroscientific procedures. A number of Non-invasive Head Immobilisation Systems (NHIS) for monkeys are available, but the need remains for a feasible integrated system combining a broad range of essential features. NEW METHOD: We developed an individualised macaque NHIS addressing several animal welfare and scientific needs. The system comprises a customised-to-fit facemask that can be used separately or combined with a back piece to form a full-head helmet. The system permits presentation of visual and auditory stimuli during immobilisation and provides mouth access for reward. RESULTS: The facemask was incorporated into an automated voluntary training system, allowing the animals to engage with it for increasing periods leading to full head immobilisation. We evaluated the system during performance on several auditory or visual behavioural tasks with testing sessions lasting 1.5-2h, used thermal imaging to monitor for and prevent pressure points, and measured head movement using MRI. COMPARISON WITH EXISTING METHODS: A comprehensive evaluation of the system is provided in relation to several scientific and animal welfare requirements. Behavioural results were often comparable to those obtained with surgical implants. Cost-benefit analyses were conducted comparing the system with surgical options, highlighting the benefits of implementing the non-invasive option. CONCLUSIONS: The system has a number of potential applications and could be an important tool in neuroscientific research, when direct access to the brain for neuronal recordings is not required, offering the opportunity to conduct non-invasive experiments while improving animal welfare and reducing reliance on surgically implanted head posts.


Assuntos
Automação Laboratorial/instrumentação , Cabeça , Macaca mulatta , Restrição Física/instrumentação , Estimulação Acústica , Bem-Estar do Animal , Animais , Temperatura Corporal , Desenho de Equipamento/economia , Habituação Psicofisiológica , Movimentos da Cabeça , Imageamento por Ressonância Magnética/instrumentação , Masculino , Modelos Anatômicos , Boca , Neurociências/instrumentação , Estimulação Luminosa , Testes Psicológicos , Recompensa , Fatores de Tempo , Volição , Vigília
13.
Front Neurosci ; 8: 198, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25100930

RESUMO

Recent neuroimaging studies in primates aim to define the functional properties of auditory cortical areas, especially areas beyond A1, in order to further our understanding of the auditory cortical organization. Precise mapping of functional magnetic resonance imaging (fMRI) results and interpretation of their localizations among all the small auditory subfields remains challenging. To facilitate this mapping, we combined here information from cortical folding, micro-anatomy, surface-based atlas and tonotopic mapping. We used for the first time, phase-encoded fMRI design for mapping the monkey tonotopic organization. From posterior to anterior, we found a high-low-high progression of frequency preference on the superior temporal plane. We show a faithful representation of the fMRI results on a locally flattened surface of the superior temporal plane. In a tentative scheme to delineate core versus belt regions which share similar tonotopic organizations we used the ratio of T1-weighted and T2-weighted MR images as a measure of cortical myelination. Our results, presented along a co-registered surface-based atlas, can be interpreted in terms of a current model of the monkey auditory cortex.

14.
Phys Med Biol ; 56(20): 6635-47, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21941028

RESUMO

Errors in the flip angle have to be corrected in many magnetic resonance imaging applications, especially for T1 quantification. However, the existing methods of B1 mapping fail to measure lower values of the flip angle despite the fact that these are extensively used in dynamic acquisition and 3D imaging. In this study, the nonlinearity of the radiofrequency (RF) transmit chain, especially for very low flip angles, is investigated and a simple method is proposed to accurately determine both the gain of the RF transmitter and the B1 field map for low flip angles. The method makes use of the spoiled gradient echo sequence with long repetition time (TR), such as applied in the double-angle method. It uses an image acquired with a flip angle of 90° as a reference image that is robust to B1 inhomogeneity. The ratio of the image at flip angle alpha to the image at a flip angle of 90° enables us to calculate the actual value of alpha. This study was carried out at 1.5 and 4.7 T, showing that the linearity of the RF supply system is highly dependent on the hardware. The method proposed here allows us to measure the flip angle from 1° to 60° with a maximal uncertainty of 10% and to correct T1 maps based on the variable flip angle method.


Assuntos
Imageamento por Ressonância Magnética/métodos , Método de Monte Carlo , Probabilidade , Ondas de Rádio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa