Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
2.
J Cell Sci ; 137(14)2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963001

RESUMO

Semaphorin6A (Sema6A) is a repulsive guidance molecule that plays many roles in central nervous system, heart and bone development, as well as immune system responses and cell signaling in cancer. Loss of Sema6A or its receptor PlexinA2 in zebrafish leads to smaller eyes and improper retinal patterning. Here, we investigate a potential role for the Sema6A intracellular domain in zebrafish eye development and dissect which phenotypes rely on forward signaling and which rely on reverse signaling. We performed rescue experiments on zebrafish Sema6A morphants with either full-length Sema6A (Sema6A-FL) or Sema6A lacking its intracellular domain (Sema6A-ΔC). We identified that the intracellular domain is not required for eye size and retinal patterning, however it is required for retinal integrity, the number and end feet strength of Müller glia and protecting against retinal cell death. This novel function for the intracellular domain suggests a role for Sema6A reverse signaling in zebrafish eye development.


Assuntos
Domínios Proteicos , Retina , Semaforinas , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Semaforinas/metabolismo , Semaforinas/genética , Retina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Transdução de Sinais , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia
4.
J Immunol ; 210(6): 807-819, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36705532

RESUMO

Thousands of long noncoding RNAs are encoded in mammalian genomes, yet most remain uncharacterized. In this study, we functionally characterized a mouse long noncoding RNA named U90926. Analysis of U90926 RNA levels revealed minimal expression across multiple tissues at steady state. However, the expression of this gene was highly induced in macrophages and dendritic cells by TLR activation, in a p38 MAPK- and MyD88-dependent manner. To study the function of U90926, we generated U90926-deficient (U9-KO) mice. Surprisingly, we found minimal effects of U90926 deficiency in cultured macrophages. Given the lack of macrophage-intrinsic effect, we investigated the subcellular localization of U90926 transcript and its protein-coding potential. We found that U90926 RNA localizes to the cytosol, associates with ribosomes, and contains an open reading frame that encodes a novel glycosylated protein (termed U9-ORF), which is secreted from the cell. An in vivo model of endotoxic shock revealed that, in comparison with wild type mice, U9-KO mice exhibited increased sickness responses and mortality. Mechanistically, serum levels of IL-6 were elevated in U9-KO mice, and IL-6 neutralization improved endotoxemia outcomes in U9-KO mice. Taken together, these results suggest that U90926 expression is protective during endotoxic shock, potentially mediated by the paracrine and/or endocrine actions of the novel U9-ORF protein secreted by activated myeloid cells.


Assuntos
RNA Longo não Codificante , Choque Séptico , Camundongos , Animais , RNA Longo não Codificante/genética , Interleucina-6 , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Choque Séptico/genética , Choque Séptico/metabolismo , Mamíferos/genética
5.
Dev Dyn ; 251(2): 362-376, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34268820

RESUMO

BACKGROUND: The development of the central nervous system (CNS) requires critical cell signaling molecules to coordinate cell proliferation and migration in order to structure the adult tissue. Chicken tumor virus #10 Regulator of Kinase (CRK) and CRK-like (CRKL) are adaptor proteins with pre-metazoan ancestry and are known to be required for patterning laminated structures downstream of Reelin (RELN), such as the cerebral cortex, cerebellum, and hippocampus. CRK and CRKL also play crucial roles in a variety of other growth factor and extracellular matrix signaling cascades. The neuronal retina is another highly laminated structure within the CNS that is dependent on migration for proper development, but the cell signaling mechanisms behind neuronal positioning in the retina are only partly understood. RESULTS: We find that crk and crkl have largely overlapping expression within the developing zebrafish nervous system. We find that their disruption results in smaller eye size and loss of retinal lamination. CONCLUSIONS: Our data indicate that Crk adaptors are critical for proper development of the zebrafish neural retina in a crk/crkl dose-dependent manner.


Assuntos
Proteínas Nucleares , Peixe-Zebra , Animais , Proliferação de Células , Proteínas Nucleares/metabolismo , Retina/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra/metabolismo
6.
Mol Cell Proteomics ; 19(10): 1586-1601, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32606017

RESUMO

The Discoidin, CUB, and LCCL domain-containing protein (DCBLD) family consists of two type-I transmembrane scaffolding receptors, DCBLD1 and DCBLD2, which play important roles in development and cancer. The nonreceptor tyrosine kinases FYN and ABL are known to drive phosphorylation of tyrosine residues in YXXP motifs within the intracellular domains of DCBLD family members, which leads to the recruitment of the Src homology 2 (SH2) domain of the adaptors CT10 regulator of kinase (CRK) and CRK-like (CRKL). We previously characterized the FYN- and ABL-driven phosphorylation of DCBLD family YXXP motifs. However, we have identified additional FYN- and ABL-dependent phosphorylation sites on DCBLD1 and DCBLD2. This suggests that beyond CRK and CRKL, additional DCBLD interactors may be regulated by FYN and ABL activity. Here, we report a quantitative proteomics approach in which we map the FYN- and ABL-regulated interactomes of DCBLD family members. We found FYN and ABL regulated the binding of several signaling molecules to DCBLD1 and DCBLD2, including members of the 14-3-3 family of adaptors. Biochemical investigation of the DCBLD2/14-3-3 interaction revealed ABL-induced binding of 14-3-3 family members directly to DCBLD2.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Proteínas de Membrana/química , Modelos Biológicos , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosforilação , Mapas de Interação de Proteínas
7.
Ecol Lett ; 24(1): 94-101, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33079483

RESUMO

Incremental increases in a driver variable, such as nutrients or detritus, can trigger abrupt shifts in aquatic ecosystems that may exhibit hysteretic dynamics and a slow return to the initial state. A model system for understanding these dynamics is the microbial assemblage that inhabits the cup-shaped leaves of the pitcher plant Sarracenia purpurea. With enrichment of organic matter, this system flips within three days from an oxygen-rich state to an oxygen-poor state. In a replicated greenhouse experiment, we enriched pitcher-plant leaves at different rates with bovine serum albumin (BSA), a molecular substitute for detritus. Changes in dissolved oxygen (DO) and undigested BSA concentration were monitored during enrichment and recovery phases. With increasing enrichment rates, the dynamics ranged from clockwise hysteresis (low), to environmental tracking (medium), to novel counter-clockwise hysteresis (high). These experiments demonstrate that detrital enrichment rate can modulate a diversity of hysteretic responses within a single aquatic ecosystem, and suggest different management strategies may be needed to mitigate the effects of high vs. low rates of detrital enrichment.


Assuntos
Ecossistema , Sarraceniaceae , Modelos Biológicos , Folhas de Planta
8.
PLoS Pathog ; 15(11): e1008100, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710650

RESUMO

Viral late domains are used by many viruses to recruit the cellular endosomal sorting complex required for transport (ESCRT) to mediate membrane scission during viral budding. Unlike the P(S/T)AP and YPX(1-3)L late domains, which interact directly with the ESCRT proteins Tsg101 and ALIX, the molecular linkage connecting the PPXY late domain to ESCRT proteins is unclear. The mammarenavirus lymphocytic choriomeningitis virus (LCMV) matrix protein, Z, contains only one late domain, PPXY. We previously found that this domain in LCMV Z, as well as the ESCRT pathway, are required for the release of defective interfering (DI) particles but not infectious virus. To better understand the molecular mechanism of ESCRT recruitment by the PPXY late domain, affinity purification-mass spectrometry was used to identify host proteins that interact with the Z proteins of the Old World mammarenaviruses LCMV and Lassa virus. Several Nedd4 family E3 ubiquitin ligases interact with these matrix proteins and in the case of LCMV Z, the interaction was PPXY-dependent. We demonstrated that these ligases directly ubiquitinate LCMV Z and mapped the specific lysine residues modified. A recombinant LCMV containing a Z that cannot be ubiquitinated maintained its ability to produce both infectious virus and DI particles, suggesting that direct ubiquitination of LCMV Z alone is insufficient for recruiting ESCRT proteins to mediate virus release. However, Nedd4 ligases appear to be important for DI particle release suggesting that ubiquitination of targets other than the Z protein itself is required for efficient viral ESCRT recruitment.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitinação , Montagem de Vírus , Replicação Viral , Humanos , Coriomeningite Linfocítica/metabolismo , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas
9.
J Immunol ; 203(9): 2369-2376, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31548331

RESUMO

Lack of understanding of the nature and physiological regulation of γδ T cell ligands has considerably hampered full understanding of the function of these cells. We developed an unbiased approach to identify human γδ T cells ligands by the production of a soluble TCR-γδ (sTCR-γδ) tetramer from a synovial Vδ1 γδ T cell clone from a Lyme arthritis patient. The sTCR-γδ was used in flow cytometry to initially define the spectrum of ligand expression by both human tumor cell lines and certain human primary cells. Analysis of diverse tumor cell lines revealed high ligand expression on several of epithelial or fibroblast origin, whereas those of hematopoietic origin were largely devoid of ligand. This allowed a bioinformatics-based identification of candidate ligands using RNAseq data from each tumor line. We further observed that whereas fresh monocytes and T cells expressed low to negligible levels of TCR-γδ ligands, activation of these cells resulted in upregulation of surface ligand expression. Ligand upregulation on monocytes was partly dependent upon IL-1ß. The sTCR-γδ tetramer was then used to bind candidate ligands from lysates of activated monocytes and analyzed by mass spectrometry. Surface TCR-γδ ligand was eliminated by treatment with trypsin or removal of glycosaminoglycans, and also suppressed by inhibition of endoplasmic reticulum-Golgi transport. Of particular interest was that inhibition of glycolysis also blocked TCR-γδ ligand expression. These findings demonstrate the spectrum of ligand(s) expression for human synovial Vδ1 γδ T cells as well as the physiology that regulates their expression.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linhagem Celular , Glicólise , Humanos , Ligantes , Ativação Linfocitária , Monócitos/metabolismo , Multimerização Proteica , Receptores de Antígenos de Linfócitos T gama-delta/química , Membrana Sinovial/citologia , Subpopulações de Linfócitos T/imunologia
10.
J Immunol ; 201(8): 2377-2384, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30158125

RESUMO

Studies comparing endogenous and recombinant serum amyloid A (SAA) have generated conflicting data on the proinflammatory function of these proteins. In exploring this discrepancy, we found that in contrast to commercially sourced recombinant human SAA1 (hSAA1) proteins produced in Escherichia coli, hSAA1 produced from eukaryotic cells did not promote proinflammatory cytokine production from human or mouse cells, induce Th17 differentiation, or stimulate TLR2. Proteomic analysis of E. coli-derived hSAA1 revealed the presence of numerous bacterial proteins, with several being reported or probable lipoproteins. Treatment of hSAA1 with lipoprotein lipase or addition of a lipopeptide to eukaryotic cell-derived hSAA1 inhibited or induced the production of TNF-α from macrophages, respectively. Our results suggest that a function of SAA is in the binding of TLR2-stimulating bacterial proteins, including lipoproteins, and demand that future studies of SAA employ a recombinant protein derived from eukaryotic cells.


Assuntos
Leucócitos Mononucleares/imunologia , Proteína Amiloide A Sérica/imunologia , Células Th17/imunologia , Receptor 2 Toll-Like/agonistas , Adulto , Animais , Diferenciação Celular , Citocinas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Lipoproteínas/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteína Amiloide A Sérica/genética
11.
Biochem J ; 476(6): 931-950, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902898

RESUMO

The discoidin, CUB, and LCCL domain-containing (DCBLD) receptor family are composed of the type-I transmembrane proteins DCBLD1 and DCBLD2 (also ESDN and CLCP1). These proteins are highly conserved across vertebrates and possess similar domain structure to that of neuropilins, which act as critical co-receptors in developmental processes. Although DCBLD1 remains largely uncharacterized, the functional and mechanistic roles of DCBLD2 are emerging. This review provides a comprehensive discussion of this presumed receptor family, ranging from structural and signaling aspects to their associations with cancer, physiology, and development.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Animais , Humanos , Neoplasias/patologia
12.
J Biol Chem ; 293(43): 16791-16802, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30206122

RESUMO

The type I cGMP-dependent protein kinase (PKG I) is an essential regulator of vascular tone. It has been demonstrated that the type Iα isoform can be constitutively activated by oxidizing conditions. However, the amino acid residues implicated in this phenomenon are not fully elucidated. To investigate the molecular basis for this mechanism, we studied the effects of oxidation using recombinant WT, truncated, and mutant constructs of PKG I. Using an in vitro assay, we observed that oxidation with hydrogen peroxide (H2O2) resulted in constitutive, cGMP-independent activation of PKG Iα. PKG Iα C42S and a truncation construct that does not contain Cys-42 (Δ53) were both constitutively activated by H2O2 In contrast, oxidation of PKG Iα C117S maintained its cGMP-dependent activation characteristics, although oxidized PKG Iα C195S did not. To corroborate these results, we also tested the effects of our constructs on the PKG Iα-specific substrate, the large conductance potassium channel (KCa 1.1). Application of WT PKG Iα activated by either cGMP or H2O2 increased the open probabilities of the channel. Neither cGMP nor H2O2 activation of PKG Iα C42S significantly increased channel open probabilities. Moreover, cGMP-stimulated PKG Iα C117S increased KCa 1.1 activity, but this effect was not observed under oxidizing conditions. Finally, we observed that PKG Iα C42S caused channel flickers, indicating dramatically altered KCa 1.1 channel characteristics compared with channels exposed to WT PKG Iα. Cumulatively, these results indicate that constitutive activation of PKG Iα proceeds through oxidation of Cys-117 and further suggest that the formation of a sulfur acid is necessary for this phenotype.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , GMP Cíclico/metabolismo , Cisteína/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Proteína Quinase Dependente de GMP Cíclico Tipo I/química , Cisteína/química , Modelos Moleculares , Óxido Nítrico/metabolismo , Oxirredução , Fosforilação , Conformação Proteica , Homologia de Sequência
13.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187543

RESUMO

Arenaviruses are negative-strand, enveloped RNA viruses that cause significant human disease. In particular, Junín mammarenavirus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. At present, little is known about the cellular proteins that the arenavirus matrix protein (Z) hijacks to accomplish its various functions, including driving the process of virus release. Furthermore, there is little knowledge regarding host proteins incorporated into arenavirus particles and their importance for virion function. To address these deficiencies, we used mass spectrometry to identify human proteins that (i) interact with the JUNV matrix protein inside cells or within virus-like particles (VLPs) and/or (ii) are incorporated into bona fide JUNV strain Candid#1 particles. Bioinformatics analyses revealed that multiple classes of human proteins were overrepresented in the data sets, including ribosomal proteins, Ras superfamily proteins, and endosomal sorting complex required for transport (ESCRT) proteins. Several of these proteins were required for the propagation of JUNV (ADP ribosylation factor 1 [ARF1], ATPase, H+ transporting, lysosomal 38-kDa, V0 subunit d1 [ATP6V0D1], and peroxiredoxin 3 [PRDX3]), lymphocytic choriomeningitis mammarenavirus (LCMV) (Rab5c), or both viruses (ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide [ATP5B] and IMP dehydrogenase 2 [IMPDH2]). Furthermore, we show that the release of infectious JUNV particles, but not LCMV particles, requires a functional ESCRT pathway and that ATP5B and IMPDH2 are required for JUNV budding. In summary, we have provided a large-scale map of host machinery that associates with JUNV and identified key human proteins required for its propagation. This data set provides a resource for the field to guide antiviral target discovery and to better understand the biology of the arenavirus matrix protein and the importance of host proteins for virion function.IMPORTANCE Arenaviruses are deadly human pathogens for which there are no U.S. Food and Drug Administration-approved vaccines and only limited treatment options. Little is known about the host proteins that are incorporated into arenavirus particles or that associate with its multifunctional matrix protein. Using Junín mammarenavirus (JUNV), the causative agent of Argentine hemorrhagic fever, as a model organism, we mapped the human proteins that are incorporated into JUNV particles or that associate with the JUNV matrix protein. Functional analysis revealed host machinery that is required for JUNV propagation, including the cellular ESCRT pathway. This study improves our understanding of critical arenavirus-host interactions and provides a data set that will guide future studies to better understand arenavirus pathogenesis and identify novel host proteins that can be therapeutically targeted.


Assuntos
Febre Hemorrágica Americana/virologia , Interações Hospedeiro-Patógeno , Vírus Junin/patogenicidade , Proteoma/metabolismo , Proteômica/métodos , Replicação Viral , Células HEK293 , Febre Hemorrágica Americana/metabolismo , Humanos , Vírus Junin/isolamento & purificação , Proteoma/análise , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus
14.
Bioinformatics ; 34(22): 3898-3906, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29868839

RESUMO

Motivation: The development of proteomic methods for the characterization of domain/motif interactions has greatly expanded our understanding of signal transduction. However, proteomics-based binding screens have limitations including that the queried tissue or cell type may not harbor all potential interacting partners or post-translational modifications (PTMs) required for the interaction. Therefore, we sought a generalizable, complementary in silico approach to identify potentially novel motif and PTM-dependent binding partners of high priority. Results: We used as an initial example the interaction between the Src homology 2 (SH2) domains of the adaptor proteins CT10 regulator of kinase (CRK) and CRK-like (CRKL) and phosphorylated-YXXP motifs. Employing well-curated, publicly-available resources, we scored and prioritized potential CRK/CRKL-SH2 interactors possessing signature characteristics of known interacting partners. Our approach gave high priority scores to 102 of the >9000 YXXP motif-containing proteins. Within this 102 were 21 of the 25 curated CRK/CRKL-SH2-binding partners showing a more than 80-fold enrichment. Several predicted interactors were validated biochemically. To demonstrate generalized applicability, we used our workflow to predict protein-protein interactions dependent upon motif-specific arginine methylation. Our data demonstrate the applicability of our approach to, conceivably, any modular binding domain that recognizes a specific post-translationally modified motif. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Proteômica , Proteínas Adaptadoras de Transdução de Sinal , Fosforilação , Ligação Proteica , Transdução de Sinais , Domínios de Homologia de src
15.
Mol Cell ; 41(6): 661-71, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21419341

RESUMO

Cell movement begins with a leading edge protrusion, which is stabilized by nascent adhesions and retracted by mature adhesions. The ERK-MAPK (extracellular signal-regulated kinase-mitogen-activated protein kinase) localizes to protrusions and adhesions, but how it regulates motility is not understood. We demonstrate that ERK controls protrusion initiation and protrusion speed. Lamellipodial protrusions are generated via the WRC (WAVE2 regulatory complex), which activates the Arp2/3 actin nucleator for actin assembly. The WRC must be phosphorylated to be activated, but the sites and kinases that regulate its intermolecular changes and membrane recruitment are unknown. We show that ERK colocalizes with the WRC at lamellipodial leading edges and directly phosphorylates two WRC components: WAVE2 and Abi1. The phosphorylations are required for functional WRC interaction with Arp2/3 and actin during cell protrusion. Thus, ERK coordinates adhesion disassembly with WRC activation and actin polymerization to promote productive leading edge advancement during cell migration.


Assuntos
Movimento Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pseudópodes/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/citologia , Células Epiteliais/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Fosforilação , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
16.
Proc Natl Acad Sci U S A ; 113(26): E3667-75, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298372

RESUMO

The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast.


Assuntos
Dano ao DNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Reparo do DNA , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539447

RESUMO

Arenaviruses are enveloped negative-strand RNA viruses that cause significant human disease. These viruses encode only four proteins to accomplish the viral life cycle, so each arenavirus protein likely plays unappreciated accessory roles during infection. Here we used immunoprecipitation and mass spectrometry to identify human proteins that interact with the nucleoproteins (NPs) of the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) and the New World arenavirus Junín virus (JUNV) strain Candid #1. Bioinformatic analysis of the identified protein partners of NP revealed that host translation appears to be a key biological process engaged during infection. In particular, NP associates with the double-stranded RNA (dsRNA)-activated protein kinase (PKR), a well-characterized antiviral protein that inhibits cap-dependent protein translation initiation via phosphorylation of eIF2α. JUNV infection leads to increased expression of PKR as well as its redistribution to viral replication and transcription factories. Further, phosphorylation of PKR, which is a prerequisite for its ability to phosphorylate eIF2α, is readily induced by JUNV. However, JUNV prevents this pool of activated PKR from phosphorylating eIF2α, even following exposure to the synthetic dsRNA poly(I·C), a potent PKR agonist. This blockade of PKR function is highly specific, as LCMV is unable to similarly inhibit eIF2α phosphorylation. JUNV's ability to antagonize the antiviral activity of PKR appears to be complete, as silencing of PKR expression has no impact on viral propagation. In summary, we provide a detailed map of the host machinery engaged by arenavirus NPs and identify an antiviral pathway that is subverted by JUNV.IMPORTANCE Arenaviruses are important human pathogens for which FDA-approved vaccines do not exist and effective antiviral therapeutics are needed. Design of antiviral treatment options and elucidation of the mechanistic basis of disease pathogenesis will depend on an increased basic understanding of these viruses and, in particular, their interactions with the host cell machinery. Identifying host proteins critical for the viral life cycle and/or pathogenesis represents a useful strategy to uncover new drug targets. This study reveals, for the first time, the extensive human protein interactome of arenavirus nucleoproteins and uncovers a potent antiviral host protein that is neutralized during Junín virus infection. In so doing, it shows further insight into the interplay between the virus and the host innate immune response and provides an important data set for the field.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Vírus Junin/patogenicidade , Vírus da Coriomeningite Linfocítica/patogenicidade , Proteínas do Nucleocapsídeo/metabolismo , eIF-2 Quinase/antagonistas & inibidores , Linhagem Celular , Humanos , Imunoprecipitação , Espectrometria de Massas , Mapeamento de Interação de Proteínas
18.
PLoS Pathog ; 12(3): e1005501, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27010636

RESUMO

Arenaviruses cause severe diseases in humans but establish asymptomatic, lifelong infections in rodent reservoirs. Persistently-infected rodents harbor high levels of defective interfering (DI) particles, which are thought to be important for establishing persistence and mitigating virus-induced cytopathic effect. Little is known about what drives the production of DI particles. We show that neither the PPXY late domain encoded within the lymphocytic choriomeningitis virus (LCMV) matrix protein nor a functional endosomal sorting complex transport (ESCRT) pathway is absolutely required for the generation of standard infectious virus particles. In contrast, DI particle release critically requires the PPXY late domain and is ESCRT-dependent. Additionally, the terminal tyrosine in the PPXY motif is reversibly phosphorylated and our findings indicate that this posttranslational modification may regulate DI particle formation. Thus we have uncovered a new role for the PPXY late domain and a possible mechanism for its regulation.


Assuntos
Vírus Defeituosos/metabolismo , Vírus da Coriomeningite Linfocítica/fisiologia , Vírion/metabolismo , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Humanos , Fosforilação , Estrutura Terciária de Proteína , Liberação de Vírus
19.
Mol Cell ; 39(1): 86-99, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603077

RESUMO

Cytokinesis in Schizosaccharomyces pombe requires the function of Cdc15, the founding member of the pombe cdc15 homology (PCH) family of proteins. As an early, abundant contractile ring component with multiple binding partners, Cdc15 plays a key role in organizing the ring. We demonstrate that Cdc15 phosphorylation at many sites generates a closed conformation, inhibits Cdc15 assembly at the division site in interphase, and precludes interaction of Cdc15 with its binding partners. Cdc15 dephosphorylation induces an open conformation, oligomerization, and scaffolding activity during mitosis. Cdc15 mutants with reduced phosphorylation precociously appear at the division site in filament-like structures and display increased association with protein partners and the membrane. Our results indicate that Cdc15 phosphoregulation impels both assembly and disassembly of the contractile apparatus and suggest a regulatory strategy that PCH family and BAR superfamily members might broadly employ to achieve temporal specificity in their roles as linkers between membrane and cytoskeleton.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Alanina/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Fosforilação , Ligação Proteica , Estrutura Quaternária de Proteína , Transporte Proteico , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/metabolismo , Relação Estrutura-Atividade
20.
Biochem J ; 474(23): 3963-3984, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29025973

RESUMO

Discoidin, CUB, and LCCL domain containing 2 (DCBLD2) is a neuropilin-like transmembrane scaffolding receptor with known and anticipated roles in vascular remodeling and neuronal positioning. DCBLD2 is also up-regulated in several cancers and can drive glioblastomas downstream of activated epidermal growth factor receptor. While a few studies have shown either a positive or negative role for DCBLD2 in regulating growth factor receptor signaling, little is known about the conserved signaling features of DCBLD family members that drive their molecular activities. We previously identified DCBLD2 tyrosine phosphorylation sites in intracellular YxxP motifs that are required for the phosphorylation-dependent binding of the signaling adaptors CRK and CRKL (CT10 regulator of kinase and CRK-like). These intracellular YxxP motifs are highly conserved across vertebrates and between DCBLD family members. Here, we demonstrate that, as for DCBLD2, DCBLD1 YxxP motifs are required for CRKL-SH2 (Src homology 2) binding. We report that Src family kinases (SFKs) and Abl differentially promote the interaction between the CRKL-SH2 domain and DCBLD1 and DCBLD2, and while SFKs and Abl each promote DCBLD1 and DCBLD2 binding to the CRKL-SH2 domain, the effect of Abl is more pronounced for DCBLD1. Using high-performance liquid chromatography coupled with tandem mass spectrometry, we quantified phosphorylation at several YxxP sites in DCBLD1 and DCBLD2, mapping site-specific preferences for SFKs and Abl. Together, these data provide a platform to decipher the signaling mechanisms by which these novel receptors drive their biological activities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Membrana/química , Proteínas Nucleares/química , Proteínas Oncogênicas v-abl/química , Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas v-abl/metabolismo , Fosforilação , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa