RESUMO
The adsorption of biomolecules to the surface of nanoparticles (NPs) following administration into biological environments is widely recognized. In particular, the "protein corona" is well understood in terms of formation kinetics and impact upon the biological interactions of NPs. Its presence is an essential consideration in the design of therapeutic NPs. In the present study, the protein coronas of six polymeric nanoparticles of prospective therapeutic use were investigated. These included three colloidal NPs-soft core-multishell (CMS) NPs, plus solid cationic Eudragit RS (EGRS), and anionic ethyl cellulose (EC) nanoparticles-and three nanogels (NGs)-thermoresponsive dendritic-polyglycerol (dPG) nanogels (NGs) and two amino-functionalized dPG-NGs. Following incubation with human plasma, protein coronas were characterized and their biological interactions compared with pristine NPs. All NPs demonstrated protein adsorption and increased hydrodynamic diameters, although the solid EGRS and EC NPs bound notably more protein than the other tested particles. Shifts toward moderately negative surface charges were also observed for all corona bearing NPs, despite varied zeta potentials in their pristine states. While the uptake and cellular adhesion of the colloidal NPs in primary human keratinocytes and human umbilical vein endothelial cells were significantly decreased when bearing the protein corona, no obvious impact was seen in the NGs. By contrast, corona bearing NGs induced marked increases in cytokine release from primary human macrophages not seen with corona bearing colloidal NPs. Despite this, no apparent enhancement to in vitro toxicity was noted. Finally, drug release from EGRS and EC NPs was assessed, where a decrease was seen in the EGRS NPs alone. Together these results provide a direct comparison of the physical and biological impact the protein corona has on NPs of widely varied character and in particular highlights a distinction between the corona's effects on NGs and colloidal NPs.
Assuntos
Resinas Acrílicas/química , Materiais Biocompatíveis/química , Celulose/análogos & derivados , Glicerol/química , Nanopartículas/química , Polímeros/química , Coroa de Proteína/química , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Materiais Biocompatíveis/farmacologia , Proteínas Sanguíneas/química , Celulose/química , Coloides , Citocinas/biossíntese , Citocinas/metabolismo , Dexametasona/química , Dexametasona/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Cultura Primária de Células , Eletricidade EstáticaRESUMO
Controlled delivery of corticosteroids using nanoparticles to the skin and corneal epithelium may reduce their side effects and maximize treatment effectiveness. Dexamethasone-loaded ethyl cellulose, Eudragit® RS and ethyl cellulose/Eudragit® RS nanoparticles were prepared by the solvent evaporation method. Dexamethasone release from the polymeric nanoparticles was investigated in vitro using Franz diffusion cells. Drug penetration was also assessed ex vivo using excised human skin. Nanoparticle toxicity was determined by MTT and H2DCFDA assays. Eudragit® RS nanoparticles were smaller and positively charged but had a lower dexamethasone loading capacity (0.3-0.7%) than ethyl cellulose nanoparticles (1.4-2.2%). By blending the two polymers (1:1), small (105nm), positively charged (+37mV) nanoparticles with sufficient dexamethasone loading (1.3%) were obtained. Dexamethasone release and penetration significantly decreased with decreasing drug to polymer ratio and increased when Eudragit® RS was blended with ethyl cellulose. Ex vivo, drug release and penetration from the nanoparticles was slower than a conventional cream. The nanoparticles bear no toxicity potentials except ethyl cellulose nanoparticles had ROS generation potential at high concentration. In conclusion, the nanoparticles showed great potential to control the release and penetration of corticosteroids on the skin and mucus membrane and maximize treatment effectiveness.
Assuntos
Corticosteroides/química , Preparações de Ação Retardada/química , Epitélio Corneano/efeitos dos fármacos , Nanopartículas/química , Polímeros/química , Pele/efeitos dos fármacos , Resinas Acrílicas/química , Celulose/análogos & derivados , Celulose/química , Química Farmacêutica/métodos , Dexametasona/química , Difusão , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/fisiologia , Feminino , Humanos , SolubilidadeRESUMO
pH-sensitive nanoparticles which release in a controlled fashion on the skin or dissolve in the hair follicle could significantly improve treatment effectiveness and make transfollicular drug delivery a success. Dexamethasone-loaded Eudragit® L 100 nanoparticles were prepared by nanoprecipitation from an organic drug-polymer solution. Their toxicity potential was assessed using isolated human fibroblasts. pH-dependent swelling and erosion kinetics of the nanoparticles were investigated by dynamic light scattering and viscosity measurements and its effect on drug release was assessed in vitro with Franz diffusion cells. Stable, 100-550nm-sized dexamethasone-loaded Eudragit® L 100 nanoparticles with drug loading capacity and entrapment efficiency as high as 8.3% and 85%, respectively, were obtained by using polyvinyl alcohol as a stabilizer and ethanol as organic solvent. The nanoparticles showed little or no toxicity on isolated normal human fibroblasts. Dexamethasone existed in the nanoparticles as solid solution or in amorphous form. The nanoparticles underwent extensive swelling and slow drug release in media with a low buffer capacity (as low as 10mM) and a higher pH or at a pH close to the dissolution pH of the polymer (pH6) and a higher buffer capacity. In 40mM buffer and above pH6.8, the nanoparticles eroded fast or dissolved completely and thus released the drug rapidly. pH-sensitive nanoparticles which potentially release in a controlled manner on the stratum corneum but dissolve in the hair follicle could be prepared.
Assuntos
Portadores de Fármacos , Nanopartículas , Ácidos Polimetacrílicos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dexametasona/administração & dosagem , Dexametasona/química , Dexametasona/farmacologia , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Composição de Medicamentos , Liberação Controlada de Fármacos , Fibroblastos/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Glucocorticoides/química , Glucocorticoides/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula , Ácidos Polimetacrílicos/administração & dosagem , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologiaRESUMO
In vitro drug release measurement is one of the most important methods used to assess the quality of a nanocarrier and estimate itÌs in vivo performance. Different in vitro drug release methods have been used to investigate the drug release from nanocarriers, however, little information is available with regard to a comparison of these methods (e.g. discriminative power, reproducibility). Thus, drug release from four nanocarriers (nanocrystals, lipid nanoparticles, Eudragit® RS and ethyl cellulose nanoparticles) was investigated under sink and non-sink conditions with three drug release methods: an in situ method using Sirius® inForm and two in vitro methods using dialysis bags and Franz diffusion cells. Dexamethasone was used as the model drug. The in situ measurement was a simple and fast method but not adequately discriminating because of a too rapid drug dissolution/release. Franz diffusion cells and dialysis bags were in most cases discriminative for the different nanocarriers with the drug dissolution/release being in the order of nanocrystals>Eudragit® RS nanoparticles>lipid nanoparticles>ethyl cellulose nanoparticles. Drug release experiments with Franz diffusion cells had the highest reproducibility. The Franz diffusion cells could also be easily used with semisolid dosage forms.
Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos , Nanopartículas/química , Resinas Acrílicas/química , Administração Cutânea , Celulose/análogos & derivados , Celulose/química , Dexametasona/química , Diálise , Difusão , Lipídeos/químicaRESUMO
Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-term ex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin.