Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Immunol ; 205(4): 987-993, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32690657

RESUMO

Long noncoding RNAs (lncRNAs) have been demonstrated to play important regulatory roles in gene expression, from histone modification to protein stability. However, the functions of most identified lncRNAs are not known. In this study, we investigated the role of an lncRNA called AW112010. The expression of AW112010 was significantly increased in CD4+ T cells from C57BL/6J mice activated in vivo with myelin oligodendrocyte glycoprotein, Staphylococcal enterotoxin B, or in vitro with anti-CD3 anti-CD28 mAbs, thereby demonstrating that activation of T cells leads to induction of AW112010. In contrast, anti-inflammatory cannabinoids such as cannabidiol or δ-9-tetrahydrocannabinol decreased the expression of AW112010 in T cells. Interestingly, the expression of AW112010 was high in in vitro-polarized Th1 and Th17 cells but low in Th2 cells, suggesting that this lncRNA may regulate inflammation. To identify genes that might be regulated by AW112010, we used chromatin isolation by RNA purification, followed by sequencing. This approach demonstrated that AW112010 regulated the transcription of IL-10. Additionally, the level of IL-10 in activated T cells was low when the expression of AW112010 was increased. Use of small interfering RNA to knock down AW112010 expression in activated T cells led to increased IL-10 expression and a decrease in the expression of IFN-γ. Further studies showed that AW112010 interacted with histone demethylase KDM5A, which led to decreased H3K4 methylation in IL-10 gene locus. Together, these studies demonstrate that lncRNA AW112010 promotes the differentiation of inflammatory T cells by suppressing IL-10 expression through histone demethylation.


Assuntos
Diferenciação Celular/imunologia , Histonas/imunologia , Inflamação/imunologia , Interleucina-10/imunologia , RNA Longo não Codificante/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD28/imunologia , Canabidiol/imunologia , Diferenciação Celular/genética , Cromatina/imunologia , Desmetilação , Dronabinol/imunologia , Enterotoxinas/imunologia , Feminino , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , RNA Mensageiro/imunologia
2.
Mol Med ; 26(1): 110, 2020 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-33189141

RESUMO

BACKGROUND: Posttraumatic stress disorder (PTSD) is a psychiatric disorder accompanied by chronic peripheral inflammation. What triggers inflammation in PTSD is currently unclear. In the present study, we identified potential defects in signaling pathways in peripheral blood mononuclear cells (PBMCs) from individuals with PTSD. METHODS: RNAseq (5 samples each for controls and PTSD), ChIPseq (5 samples each) and miRNA array (6 samples each) were used in combination with bioinformatics tools to identify dysregulated genes in PBMCs. Real time qRT-PCR (24 samples each) and in vitro assays were employed to validate our primary findings and hypothesis. RESULTS: By RNA-seq analysis of PBMCs, we found that Wnt signaling pathway was upregulated in PTSD when compared to normal controls. Specifically, we found increased expression of WNT10B in the PTSD group when compared to controls. Our findings were confirmed using NCBI's GEO database involving a larger sample size. Additionally, in vitro activation studies revealed that activated but not naïve PBMCs from control individuals expressed more IFNγ in the presence of recombinant WNT10B suggesting that Wnt signaling played a crucial role in exacerbating inflammation. Next, we investigated the mechanism of induction of WNT10B and found that increased expression of WNT10B may result from epigenetic modulation involving downregulation of hsa-miR-7113-5p which targeted WNT10B. Furthermore, we also observed that WNT10B overexpression was linked to higher expression of H3K4me3 histone modification around the promotor of WNT10B. Additionally, knockdown of histone demethylase specific to H3K4me3, using siRNA, led to increased expression of WNT10B providing conclusive evidence that H3K4me3 indeed controlled WNT10B expression. CONCLUSIONS: In summary, our data demonstrate for the first time that Wnt signaling pathway is upregulated in PBMCs of PTSD patients resulting from epigenetic changes involving microRNA dysregulation and histone modifications, which in turn may promote the inflammatory phenotype in such cells.


Assuntos
Regulação da Expressão Gênica , Histonas/metabolismo , MicroRNAs/genética , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Via de Sinalização Wnt , Regiões 3' não Traduzidas , Estudos de Casos e Controles , Linhagem Celular Tumoral , Citocinas/metabolismo , Epigênese Genética , Feminino , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Metilação , Pessoa de Meia-Idade , Fenótipo , Interferência de RNA
3.
Int J Obes (Lond) ; 42(6): 1140-1150, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899524

RESUMO

BACKGROUND/OBJECTIVES: Obesity is a pandemic disorder that is characterized by accumulation of adipose tissue and chronic low-grade inflammation that is driven primarily by adipose tissue macrophages (ATMs). While ATM polarization from pro-(M1) to anti-(M2) inflammatory phenotype influences insulin sensitivity and energy expenditure, the mechanisms of such a switch are unclear. In the current study, we identified epigenetic pathways including microRNAs (miR) in ATMs that regulate obesity-induced inflammation. SUBJECTS/METHODS: Male C57BL/6J mice were fed normal chow diet (NCD) or high-fat diet (HFD) for 16 weeks to develop lean and diet-induced obese mice, respectively. Transcriptome microarrays, microRNA microarrays, and MeDIP-Seq were performed on ATMs isolated from visceral fat. Pathway analysis and bone marrow-derived macrophage (BMDM) transfections further allowed computational and functional analysis of miRNA-mediated ATM polarization. RESULTS: ATMs from HFD-fed mice were skewed toward M1 inflammatory phenotype. Concurrently, the expression of miRs 30a-5p, 30c-5p, and 30e-5p was downregulated in ATMs from HFD mice when compared to mice fed NCD. The miR-30 family was shown to target Delta-like-4, a Notch1 ligand, whose expression was increased in HFD ATMs. Inhibition of miR-30 in conditioned BMDM triggered Notch1 signaling, pro-inflammatory cytokine production, and M1 macrophage polarization. In addition, DNA hypermethylation was observed in mir30-associated CpG islands, suggesting that HFD downregulates miR-30 through epigenetic modifications. CONCLUSIONS: HFD-induced obesity downregulates miR-30 by DNA methylation thereby inducing Notch1 signaling in ATMs and their polarization to M1 macrophages. These findings identify miR-30 as a regulator of pro-inflammatory ATM polarization and suggest that miR-30 manipulation could be a therapeutic target for obesity-induced inflammation.


Assuntos
Inflamação/fisiopatologia , Macrófagos/metabolismo , MicroRNAs/fisiologia , Obesidade/metabolismo , Receptor Notch1/fisiologia , Magreza/metabolismo , Tecido Adiposo/patologia , Análise de Variância , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Transdução de Sinais , Magreza/genética
4.
Biomacromolecules ; 19(2): 417-425, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29384661

RESUMO

Inappropriate and frequent use of antibiotics has led to the development of antibiotic-resistant bacteria, which cause infectious diseases that are difficult to treat. With the rising threat of antibiotic resistance, the need to develop effective new antimicrobial agents is prominent. We report antimicrobial metallopolymer nanoparticles, which were prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization of a cobaltocenium-containing methacrylate monomer from silica nanoparticles. These particles are capable of forming a complex with ß-lactam antibiotics, such as penicillin, rejuvenating the bactericidal activity of the antibiotic. Disk diffusion assays showed significantly increased antibacterial activities against both Gram-positive and Gram-negative bacteria. The improved efficiencies were attributed to the inhibition of hydrolysis of the ß-lactam antibiotics and enhancement of local antibiotics concentration on a nanoparticle surface. In addition, hemolysis evaluations demonstrated minimal toxicity to red blood cells.


Assuntos
Antibacterianos/química , Cobalto/química , Nanopartículas Metálicas/química , Penicilinas/química , Dióxido de Silício/química , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Metacrilatos/química , Camundongos , Penicilinas/administração & dosagem , Penicilinas/farmacologia , Eletricidade Estática
5.
J Biol Chem ; 291(30): 15460-72, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27268054

RESUMO

Marijuana has drawn significant public attention and concern both for its medicinal and recreational use. Δ9-Tetrahydrocannabinol (THC), which is the main bioactive component in marijuana, has also been shown to possess potent anti-inflammatory properties by virtue of its ability to activate cannabinoid receptor-2 (CB-2) expressed on immune cells. In this study, we used RNA-seq to quantify the transcriptomes and transcript variants that are differentially regulated by THC in super antigen-activated lymph node cells and CD4(+) T cells. We found that the expressions of many transcripts were altered by THC in both total lymph node cells and CD4(+) T cells. Furthermore, the abundance of many miRNA precursors and long non-coding RNAs was dramatically altered in THC-treated mice. For example, the expression of miR-17/92 cluster and miR-374b/421 cluster was down-regulated by THC. On the other hand miR-146a, which has been shown to induce apoptosis, was up-regulated by THC. Long non-coding RNAs that are expressed from the opposite strand of CD27 and Appbp2 were induced by THC. In addition, THC treatment also caused alternative promoter usage and splicing. The functions of those altered transcripts were mainly related to immune response and cell proliferation.


Assuntos
Dronabinol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/biossíntese , Família Multigênica , RNA Longo não Codificante/biossíntese , Animais , Linfócitos T CD4-Positivos , Feminino , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , MicroRNAs/genética , RNA Longo não Codificante/genética
6.
J Am Chem Soc ; 136(13): 4873-6, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24628053

RESUMO

Bacteria are now becoming more resistant to most conventional antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA), a complex of multidrug-resistant Gram-positive bacterial strains, has proven especially problematic in both hospital and community settings by deactivating conventional ß-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, through various mechanisms, resulting in increased mortality rates and hospitalization costs. Here we introduce a class of charged metallopolymers that exhibit synergistic effects against MRSA by efficiently inhibiting activity of ß-lactamase and effectively lysing bacterial cells. Various conventional ß-lactam antibiotics, including penicillin-G, amoxicillin, ampicillin, and cefazolin, are protected from ß-lactamase hydrolysis via the formation of unique ion-pairs between their carboxylate anions and cationic cobaltocenium moieties. These discoveries could provide a new pathway for designing macromolecular scaffolds to regenerate vitality of conventional antibiotics to kill multidrug-resistant bacteria and superbugs.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Humanos , Hidrólise , Staphylococcus aureus Resistente à Meticilina/enzimologia , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Polímeros/química , Polímeros/farmacologia , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/microbiologia , beta-Lactamases/metabolismo , beta-Lactamas/química , beta-Lactamas/farmacologia
7.
PNAS Nexus ; 2(1): pgac290, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712935

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent AhR ligand, is an environmental contaminant that is known for mediating toxicity across generations. However, whether TCDD can induce multigenerational changes in the expression of microRNAs (miRs) has not been previously studied. In the current study, we investigated the effect of administration of TCDD in pregnant mice (F0) on gestational day 14, on the expression of miRs in the thymus of F0 and subsequent generations (F1 and F2). Of the 3200 miRs screened, 160 miRs were dysregulated similarly in F0, F1, and F2 generations, while 46 miRs were differentially altered in F0 to F2 generations. Pathway analysis revealed that the changes in miR signature profile mediated by TCDD affected the genes that regulate cell signaling, apoptosis, thymic atrophy, cancer, immunosuppression, and other physiological pathways. A significant number of miRs that showed altered expression exhibited dioxin response elements (DRE) on their promoters. Focusing on one such miR, namely miR-203 that expressed DREs and was induced across F0 to F2 by TCDD, promoter analysis showed that one of the DREs expressed by miR-203 was functional to TCDD-mediated upregulation. Also, the histone methylation status of H3K4me3 in the miR-203 promoter was significantly increased near the transcriptional start site in TCDD-treated thymocytes across F0 to F2 generations. Genome-wide chromatin immunoprecipitation sequencing study suggested that TCDD may cause alterations in histone methylation in certain genes across the three generations. Together, the current study demonstrates that gestational exposure to TCDD can alter the expression of miRs in F0 through direct activation of DREs as well as across F0, F1, and F2 generations through epigenetic pathways.

8.
Transl Psychiatry ; 12(1): 200, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551428

RESUMO

Post-traumatic stress disorder (PTSD), which frequently occurs in the aftermath of a psychologically traumatic event is characterized by heightened inflammation. People with PTSD also suffer from a number of comorbid clinical and behavioral disorders that are related to chronic inflammation. Thus, understanding the mechanisms of enhanced inflammation in PTSD can provide insights into the relationship between PTSD and associated comorbid disorders. In the current study, we investigated the role of large intervening non-coding RNAs (lincRNAs) in the regulation of inflammation in people diagnosed with PTSD. We observed that WNT ligand, WNT10B, was upregulated in the peripheral blood mononuclear cells (PBMCs) of PTSD patients. This observation was associated with higher H3K4me3 signals around WNT10B promotor in PTSD patients compared to those without PTSD. Increased H3K4me3 resulted from LINC00926, which we found to be upregulated in the PTSD sample, bringing in histone methyltransferase, MLL1, onto WNT10B promotor leading to the introduction of H3K4 trimethylation. The addition of recombinant human WNT10B to pre-activated peripheral blood mononuclear cells (PBMCs) led to increased expression of inflammatory genes such as IFNG and IL17A, suggesting that WNT10B is involved in their upregulation. Together, our data suggested that LINC00926 interacts physically with MLL1 and thereby controls the expression of IFNG and IL17A. This is the first time a long non-coding RNA is shown to regulate the expression of WNT10B and consequently inflammation. This observation has high relevance to our understanding of disease mechanisms of PTSD and comorbidities associated with PTSD.


Assuntos
RNA Longo não Codificante , Transtornos de Estresse Pós-Traumáticos , Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Proteínas Wnt/genética
9.
Biomater Sci ; 9(21): 7237-7246, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34596174

RESUMO

This paper reports antimicrobial metallopolymers containing biodegradable polycaprolactone as the backbone with boronic acid and cobaltocenium as the side chain. While boronic acid promotes interactions with bacterial cells via boronolectin with lipopolysaccharides, cationic cobaltocenium facilitates the unique complexation with anionic ß-lactam antibiotics. The synergistic interactions in these metallopolymer-antibiotic bioconjugates were evidenced by re-sensitized efficacy of penicillin-G against four different Gram-negative bacteria (E. coli, P. vulgaris, P. aeruginosa and K. pneumoniae). The degradability of the polyester backbone was validated through tests under physiological pH (7.4) and acidic pH (5.5) or under enzymatic conditions. These metallopolymers exhibited time-dependent uptake and reduction of cobalt metals in different organs of mice via in vivo absorption, distribution, metabolism, and excretion (ADME) tests.


Assuntos
Antibacterianos , Escherichia coli , Animais , Ácidos Borônicos , Camundongos , Testes de Sensibilidade Microbiana , Poliésteres
10.
Neurooncol Adv ; 3(1): vdab034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948562

RESUMO

BACKGROUND: Glioblastoma is the most common adult primary brain tumor with near-universal fatality. Major histocompatibility complex (MHC) class I molecules are important mediators of CD8 activation and can be downregulated by cancer cells to escape immune surveillance. MR1 is a nonclassical MHC-I-like molecule responsible for the activation of a subset of T cells. Although high levels of MR1 expression should enhance cancer cell recognition, various tumors demonstrate MR1 overexpression with unknown implications. Here, we study the role of MR1 in glioma. METHODS: Using multi-omics data from the Cancer Genome Atlas (TCGA), we studied MR1 expression patterns and its impact on survival for various solid tumors. In glioma specifically, we validated MR1 expression by histology, elucidate transcriptomic profiles of MR1 high versus low gliomas. To understand MR1 expression, we analyzed the methylation status of the MR1 gene and MR1 gene-related transcription factor (TF) expression. RESULTS: MR1 is overexpressed in all grades of glioma and many other solid cancers. However, only in glioma, MR1 overexpression correlated with poor overall survival and demonstrated global dysregulation of many immune-related genes in an MR1-dependent manner. MR1 overexpression correlated with decreased MR1 gene methylation and upregulation of predicted MR1 promoter binding TFs, implying MR1 gene methylation might regulate MR1 expression in glioma. CONCLUSIONS: Our in silico analysis shows that MR1 expression is a predictor of clinical outcome in glioma patients and is potentially regulated at the epigenetic level, resulting in immune-related genes dysregulation. These findings need to be validated using independent in vitro and in vivo functional studies.

11.
Front Immunol ; 12: 815840, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058939

RESUMO

Post-traumatic stress disorder (PTSD) is a psychiatric disorder and patients diagnosed with PTSD often express other comorbid health issues, particularly autoimmune and inflammatory disorders. Our previous reports investigating peripheral blood mononuclear cells (PBMCs) from PTSD patients showed that these patients exhibit an increased inflammatory T helper (Th) cell phenotype and widespread downregulation of microRNAs (miRNAs), key molecules involved in post-transcriptional gene regulation. A combination of analyzing prior datasets on gene and miRNA expression of PBMCs from PTSD and Control samples, as well as experiments using primary PBMCs collected from human PTSD and Controls blood, was used to evaluate TP53 expression, DNA methylation, and miRNA modulation on Th17 development. In the current report, we note several downregulated miRNAs were linked to tumor protein 53 (TP53), also known as p53. Expression data from PBMCs revealed that compared to Controls, PTSD patients exhibited decreased TP53 which correlated with an increased inflammatory Th17 phenotype. Decreased expression of TP53 in the PTSD population was shown to be associated with an increase in DNA methylation in the TP53 promotor region. Lastly, the most significantly downregulated TP53-associated miRNA, let-7a, was shown to negatively regulate Th17 T cells. Let-7a modulation in activated CD4+ T cells was shown to influence Th17 development and function, via alterations in IL-6 and IL-17 production, respectively. Collectively, these studies reveal that PTSD patients could be susceptible to inflammation by epigenetic dysregulation of TP53, which alters the miRNA profile to favor a proinflammatory Th17 phenotype.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Proteína Supressora de Tumor p53/genética , Adulto , Biomarcadores , Metilação de DNA , Feminino , Humanos , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Fenótipo , Regiões Promotoras Genéticas , Interferência de RNA , Índice de Gravidade de Doença , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Proteína Supressora de Tumor p53/metabolismo
12.
Oncotarget ; 12(10): 967-981, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34012510

RESUMO

CD4+ helper T (Th) cells play a critical role in shaping anti-tumor immunity by virtue of their ability to differentiate into multiple lineages in response to environmental cues. Various CD4+ lineages can orchestrate a broad range of effector activities during the initiation, expansion, and memory phase of endogenous anti-tumor immune response. In this clinical corelative study, we found that Glioblastoma (GBM) induces multi- and mixed-lineage immune response in the tumor microenvironment. Whole-genome bisulfite sequencing of tumor infiltrating and blood CD4+ T-cell from GBM patients showed 13571 differentially methylated regions and a distinct methylation pattern of methylation of tumor infiltrating CD4+ T-cells with significant inter-patient variability. The methylation changes also resulted in transcriptomic changes with 341 differentially expressed genes in CD4+ tumor infiltrating T-cells compared to blood. Analysis of specific genes involved in CD4+ differentiation and function revealed differential methylation status of TBX21, GATA3, RORC, FOXP3, IL10 and IFNG in tumor CD4+ T-cells. Analysis of lineage specific genes revealed differential methylation and gene expression in tumor CD4+ T-cells. Interestingly, we observed dysregulation of several ligands of T cell function genes in GBM tissue corresponding to the T-cell receptors that were dysregulated in tumor infiltrating CD4+ T-cells. Our results suggest that GBM might induce epigenetic alterations in tumor infiltrating CD4+ T-cells there by influencing anti-tumor immune response by manipulating differentiation and function of tumor infiltrating CD4+ T-cells. Thus, further research is warranted to understand the role of tumor induced epigenetic modification of tumor infiltrating T-cells to develop effective anti-GBM immunotherapy.

13.
Immunohorizons ; 5(6): 395-409, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103370

RESUMO

Clinical use of various forms of immunotherapeutic drugs in glioblastoma (GBM), has highlighted severe T cell dysfunction such as exhaustion in GBM patients. However, reversing T cell exhaustion using immune checkpoint inhibitors in GBM clinical trials has not shown significant overall survival benefit. Phenotypically, CD8+ T cells with downregulated CD28 coreceptors, low CD27 expression, increased CD57 expression, and telomere shortening are classified as senescent T cells. These senescent T cells are normally seen as part of aging and also in many forms of solid cancers. Absence of CD28 on T cells leads to several functional irregularities including reduced TCR diversity, incomplete activation of T cells, and defects in Ag-induced proliferation. In the context of GBM, presence and/or function of these CD8+CD28- T cells is unknown. In this clinical correlative study, we investigated the effect of aging as well as tumor microenvironment on CD8+ T cell phenotype as an indicator of its function in GBM patients. We systematically analyzed and describe a large population of CD8+CD28- T cells in both the blood and tumor-infiltrating lymphocytes of GBM patients. We found that phenotypically these CD8+CD28- T cells represent a distinct population compared with exhausted T cells. Comparative transcriptomic and pathway analysis of CD8+CD28- T cell populations in GBM patients revealed that tumor microenvironment might be influencing several immune related pathways and thus further exaggerating the age associated immune dysfunction in this patient population.


Assuntos
Envelhecimento/imunologia , Neoplasias Encefálicas/tratamento farmacológico , Linfócitos T CD8-Positivos/imunologia , Glioblastoma/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/sangue , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Antígenos CD28/análise , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Senescência Celular/imunologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Glioblastoma/sangue , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunofenotipagem , Ativação Linfocitária , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Adulto Jovem
14.
ACS Appl Mater Interfaces ; 12(19): 21221-21230, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31939652

RESUMO

New antimicrobial agents are needed to address ever-increasing antimicrobial resistance and a growing epidemic of infections caused by multidrug resistant pathogens. We design nanostructured antimicrobial copolymers containing multicyclic natural products that bear facial amphiphilicity. Bile acid based macromolecular architectures of these nanostructures can interact preferentially with bacterial membranes. Incorporation of polyethylene glycol into the copolymers not only improved the colloidal stability of nanostructures but also increased the biocompatibility. This study investigated the effects of facial amphiphilicity, polymer architectures, and self-assembled nanostructures on antimicrobial activity. Advanced nanostructures such as spheres, vesicles, and rod-shaped aggregates are formed in water from the facial amphiphilic cationic copolymers via supramolecular interactions. These aggregates were particularly interactive toward Gram-positive and Gram-negative bacterial cell membranes and showed low hemolysis against mammalian cells.


Assuntos
Antibacterianos/farmacologia , Ácidos e Sais Biliares/farmacologia , Polietilenoglicóis/farmacologia , Polímeros/farmacologia , Tensoativos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/toxicidade , Apoptose/efeitos dos fármacos , Ácidos e Sais Biliares/síntese química , Ácidos e Sais Biliares/toxicidade , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Nanoestruturas/toxicidade , Polietilenoglicóis/síntese química , Polietilenoglicóis/toxicidade , Polímeros/síntese química , Polímeros/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tensoativos/síntese química , Tensoativos/toxicidade
15.
World J Gastroenterol ; 26(32): 4763-4785, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32921956

RESUMO

BACKGROUND: Indole-3-carbinol (I3C) and other aryl hydrocarbon receptor agonists are known to modulate the immune system and ameliorate various inflammatory and autoimmune diseases in animal models, including colitis induced by dextran sulfate sodium (DSS). MicroRNAs (miRNAs) are also gaining traction as potential therapeutic agents or diagnostic elements. Enterohepatic Helicobacter (EHH) species are associated with an increased risk of inflammatory bowel disease, but little is known about how these species affect the immune system or response to treatment. AIM: To determine whether infection with an EHH species alters the response to I3C and how the immune and miRNA responses of an EHH species compare with responses to DSS and inflammatory bowel disease. METHODS: We infected C57BL/6 mice with Helicobacter muridarum (H. muridarum), with and without DSS and I3C treatment. Pathological responses were evaluated by histological examination, symptom scores, and cytokine responses. MiRNAs analysis was performed on mesenteric lymph nodes to further evaluate the regional immune response. RESULTS: H. muridarum infection alone caused colonic inflammation and upregulated proinflammatory, macrophage-associated cytokines in the colon similar to changes seen in DSS-treated mice. Further upregulation occurred upon treatment with DSS. H. muridarum infection caused broad changes in mesenteric lymph node miRNA expression, but colitis-associated miRNAs were regulated similarly in H. muridarum-infected and uninfected, DSS-treated mice. In spite of causing colitis exacerbation, H. muridarum infection did not prevent disease amelioration by I3C. I3C normalized both macrophage- and T cell-associated cytokines. CONCLUSION: Thus, I3C may be useful for inflammatory bowel disease patients regardless of EHH infection. The miRNA changes associated with I3C treatment are likely the result of, rather than the cause of immune response changes.


Assuntos
Colite , MicroRNAs , Animais , Colite/induzido quimicamente , Colite/genética , Colo , Citocinas , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Helicobacter , Humanos , Indóis , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética
16.
Sci Rep ; 9(1): 15780, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673072

RESUMO

Cannabidiol (CBD) has been shown by our laboratory to attenuate experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). In this study, we used microarray and next generation sequencing (NGS)-based approaches to determine whether CBD would alter genome-wide histone modification and gene expression in MOG sensitized lymphocytes. We compared H3K4me3 and H3K27me3 marks in CD4+ T cells from naïve, EAE and CBD treated EAE mice by ChIP-seq. Although the overall methylation level of these two histone marks did not change significantly, the signal intensity and coverage differed in individual genes, suggesting that CBD may modulate gene expression by altering histone methylation. Further analysis showed that these histone methylation signals were differentially enriched in the binding sites of certain transcription factors, such as ZNF143 and FoxA1, suggesting that these transcription factors may play important roles in CBD mediated immune modulation. Using microarray analysis, we found that the expression pattern of many EAE-induced genes was reversed by CBD treatment which was consistent with its effect on attenuating the clinical symptoms of EAE. A unique finding of this study was that the expression of many miRNAs and lncRNAs was dramatically affected by CBD. In summary, this study demonstrates that CBD suppresses inflammation through multiple mechanisms, from histone methylation to miRNA to lncRNA.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Canabidiol/farmacologia , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica , Histonas/imunologia , Processamento de Proteína Pós-Traducional , RNA não Traduzido/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Metilação/efeitos dos fármacos , Camundongos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/imunologia
17.
Adv Healthc Mater ; 8(6): e1800854, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30480381

RESUMO

Bacterial infection has evolved into one of the most dangerous global health crises. Designing potent antimicrobial agents that can combat drug-resistant bacteria is essential for treating bacterial infections. In this paper, a strategy to graft metallopolymer-antibiotic bioconjugates on gold nanoparticles is developed as an antibacterial agent to fight against different bacterial strains. Thus, these nanoparticle conjugates combine various components in one system to display enhanced bactericidal efficacy, in which small sized nanoparticles provide high surface area for bacteria to contact, cationic metallopolymers interact with the negatively charged bacterial membranes, and the ß-lactam antibiotics' sterilzation capabilities are improved via evading intracellular enzymolysis by ß-lactamase. This nanoparticle-based antibiotic-metallopolymer system exhibits an excellent broad-spectrum antibacterial effect, particularly for Gram-negative bacteria, due to the synergistic effect of multicomponents on the interaction with bacteria.


Assuntos
Antibacterianos/química , Ouro/química , Nanopartículas Metálicas/química , Polímeros/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Confocal
18.
Mol Neurobiol ; 55(2): 1419-1429, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28168424

RESUMO

Epigenetic modification may play an important role in pathophysiology of ischemic stroke (IS) risk. MicroRNAs (miRNAs), which constitute one of the modes of epigenetic regulation, have been shown to be associated with a number of clinical disorders including IS. The purpose of this study was to investigate the miRNA profile in the peripheral blood mononuclear cells (PBMCs) of IS patients and compare it with stroke-free controls. Blood samples were obtained from 19 healthy age-gender-race matched individuals who served as controls to 20 IS patients. miRNA microarray analysis with RNA from PBMCs was performed and significantly dysregulated miRNAs common among IS patients were identified. We identified 117 miRNAs with linear fold values of at least ±1.5, of which, 29 were significantly altered (p value <0.05). Ingenuity Pathway Analysis (IPA) indicated a role for the dysregulated miRNAs in conditions relevant to IS (e.g., organismal injury and abnormalities, hematological disease and immunological disease). Pro-inflammatory genes like STAT3, interleukin (IL) 12A, and IL12B were some of the highly predicted targets for the dysregulated miRNAs. Notably, we further identified three common and significantly upregulated miRNAs (hsa-miR-4656, -432, -503) and one downregulated miRNA (hsa-miR-874) among all IS patients. Molecular interactive network analysis revealed that the commonly dysregulated miRNAs share several targets with roles relevant to IS. Altogether, we report dysregulation of miRNAs in IS PBMCs and provide evidence for their involvement in the immune system alteration during IS pathophysiology.


Assuntos
Isquemia Encefálica/metabolismo , Leucócitos Mononucleares/metabolismo , MicroRNAs/metabolismo , Acidente Vascular Cerebral/metabolismo , Adulto , Idoso , Isquemia Encefálica/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Acidente Vascular Cerebral/genética
19.
Biomaterials ; 178: 363-372, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29759729

RESUMO

Over-prescription and improper use of antibiotics has led to the emergence of bacterial resistance, posing a major threat to public health. There has been significant interest in the development of alternative therapies and agents to combat antibiotic resistance. We report the preparation of recyclable magnetic iron oxide nanoparticles grafted with charged cobaltocenium-containing metallopolymers by surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. ß-Lactam antibiotics were then conjugated with metallopolymers to enhance their vitality against both Gram-positive and Gram-negative bacteria. The enhanced antibacterial activity was a result of synergy of antimicrobial segments that facilitate the inhibition of hydrolysis of antibiotics and local enhancement of antibiotic concentration on a nanoparticle surface. These magnetic nanoparticles can be recycled numerous times without losing the initial antimicrobial potency. Studies suggested negligible toxicity of metallopolymer-grafted nanoparticles to red blood cells and minimal tendency to induce resistance in bacteria.


Assuntos
Antibacterianos/farmacologia , Nanopartículas de Magnetita/química , Metais/farmacologia , Polímeros/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/ultraestrutura , Farmacorresistência Bacteriana/efeitos dos fármacos , Compostos Férricos/química , Nanopartículas de Magnetita/ultraestrutura , Testes de Sensibilidade Microbiana , Polimerização , Dióxido de Silício/síntese química , Dióxido de Silício/química , Fatores de Tempo
20.
Nat Commun ; 9(1): 5231, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30531920

RESUMO

Bacterial infections and antibiotic resistance, particularly by Gram-negative pathogens, have become a global healthcare crisis. We report the design of a class of cationic antimicrobial polymers that cluster local facial amphiphilicity from repeating units to enhance interactions with bacterial membranes without requiring a globally conformational arrangement associated with highly unfavorable entropic loss. This concept of macromolecular architectures is demonstrated with a series of multicyclic natural product-based cationic polymers. We have shown that cholic acid derivatives with three charged head groups are more potent and selective than lithocholic and deoxycholic counterparts, particularly against Gram-negative bacteria. This is ascribed to the formation of true facial amphiphilicity with hydrophilic ion groups oriented on one face and hydrophobic multicyclic hydrocarbon structures on the opposite face. Such local facial amphiphilicity is clustered via a flexible macromolecular backbone in a concerted way when in contact with bacterial membranes.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Substâncias Macromoleculares/farmacologia , Polímeros/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Bactérias/classificação , Cátions/química , Ácido Cólico/química , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Testes de Sensibilidade Microbiana/métodos , Estrutura Molecular , Polímeros/síntese química , Polímeros/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa