Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458654

RESUMO

Given the popular usage of BODIPY fluorophores in biological research, their propensity to aggregate in aqueous solution and impact their spectroscopic properties arguably warrants more attention. The probe under study herein serves as a case in point. A para-maleimide-substituted meso-phenyl BODIPY (p-MB) had previously been characterized in organic media, where its inherently high fluorescence ruled out its fluorogenic potential. Here, we have found that in aqueous solution, p-MB behaves differently, exhibiting a much-reduced fluorescence as a result of aggregation-caused quenching (ACQ). Additionally, p-MB is capable of responding to complementarily reactive substrates, including thiols and TCEP, to generate a substantial turn-on signal. The fluorescence restoration is largest when it reacts with those containing adjacent ionizable groups. By being part of a polar conjugate, p-MB assumes a disaggregated form, circumventing ACQ and unleashing up to ~1000-fold fluorescence enhancement through apparent disaggregation-induced emission (DIE). While our results support DIE as the turn-on mechanism, we found that the reactivity of the probe is much lower when it is given time to form stable aggregates. Therefore, contrary to the conventional depiction that a DIE probe works by dispersing from preformed aggregates to react with the target, our results suggest that it functions via a target-mediated inhibition of probe aggregation. Altogether, our work highlights the aggregation issue often faced by BODIPY-based probes and demonstrates how that can be exploited for turn-on sensing application. Furthermore, it reconstructs a different pathway for the DIE mechanism.


Assuntos
Compostos de Boro , Compostos de Sulfidrila , Compostos de Boro/química , Fluorescência , Corantes Fluorescentes/química , Ionóforos , Compostos de Sulfidrila/química
2.
J Proteome Res ; 19(8): 3184-3190, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32400163

RESUMO

Taurine is the most abundant free amino acid in the human body. It is found in relatively high concentrations (1-10 mM) in many animal tissues but not in plants. It has been studied since the early 1800s but has not been found to be covalently incorporated into proteins in any animal tissue. Taurine has been found in only one macromolecular complex as a post-transcriptional modification to mitochondrial tRNA. Tubulin is the subunit of microtubules found in all eukaryotic species and almost all eukaryotic cells and subject to numerous post-translational modifications (PTMs). An important PTM on α-tubulin is the removal and re-ligation of the final carboxyl residue, tyrosine. We here demonstrate that taurine can be covalently incorporated at the C-terminal end of alpha-tubulin in avian erythrocytes in a reaction that requires the de-tyrosination PTM and prevents the re-tyrosination PTM. Further, this is, to our knowledge, the first instance of taurine incorporation into a large protein.


Assuntos
Taurina , Tubulina (Proteína) , Animais , Humanos , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Taurina/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
3.
Angew Chem Int Ed Engl ; 59(33): 13814-13820, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32268004

RESUMO

The substrate promiscuity of microbial transglutaminase (mTG) has been exploited in various applications in biotechnology, in particular for the attachment of alkyl amines to glutamine-containing peptides and proteins. Here, we expand the substrate repertoire to include hydrazines, hydrazides, and alkoxyamines, resulting in the formation of isopeptide bonds with varied susceptibilities to hydrolysis or exchange by mTG. Furthermore, we demonstrate that simple unsubstituted hydrazine and dihydrazides can be used to install reactive hydrazide handles onto the side chain of internal glutamine residues. The distinct hydrazide handles can be further coupled with carbonyls, including ortho-carbonylphenylboronic acids, to form site-specific and functional bioconjugates with tunable hydrolytic stability. The extension of the substrate scope of mTG beyond canonical amines thus substantially broadens the versatility of the enzyme, providing a new approach to facilitate novel applications.


Assuntos
Streptomyces/enzimologia , Transglutaminases/metabolismo , Azidas/metabolismo , Catálise , Hidrazinas/metabolismo , Hidrólise , Peptídeos/metabolismo , Especificidade por Substrato
4.
Bioconjug Chem ; 30(10): 2604-2613, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31483610

RESUMO

Bioorthogonal chemistry has enabled the development of bioconjugates in physiological environments while averting interference from endogenous biomolecules. Reactions between carbonyl-containing molecules and alkoxyamines or hydrazines have experienced a resurgence in popularity in bioorthogonal chemistry owing to advances that allow the reactions to occur under physiological conditions. In particular, ortho-carbonyl-substituted phenylboronic acids (CO-PBAs) exhibit greatly accelerated rates of hydrazone and oxime formation via intramolecular Lewis acid catalysis. Unfortunately, the rate of the reverse reaction is also increased, yielding a kinetically less stable bioconjugate. When the substrate is a hydrazine derivative, an intramolecular reaction between the boronic acid and the hydrazone can lead to the formation of a heterocycle containing a boron-nitrogen bond. We have shown previously that α-amino hydrazides undergo rapid reaction with CO-PBAs to form highly stable, tricyclic products, and that this reaction is orthogonal to the popular azide-alkyne and tetrazine-alkene reactions. In this work, we explore a series of heteroatom-substituted hydrazides for their ability to form tricyclic products with two CO-PBAs, 2-formylphenylboronic acid (2fPBA), and 2-acetylphenylboronic acid (AcPBA). In particular, highly stable products were formed using ß-hydroxy hydrazides and 2fPBA. C-Terminal ß-hydroxy hydrazide proteins are available using conventional biochemical methods, which alleviates one of the difficulties with applications of bioorthogonal chemical reactions: site-specific incorporation of a reactive group into the biomolecular target. Using sortase-mediated ligation (SML), C-terminal threonine and serine hydrazides were appended to a model eGFP protein in high yield. Subsequent labeling with 2fPBA functionalized probes could be performed quickly and quantitatively at neutral pH using micromolar concentrations of reactants. The SML process was applied directly to an expressed protein in cellular extract, and the C-terminal modified target protein was selectively immobilized using 2fPBA-agarose. Elution from the agarose yielded a highly pure protein that retained the hydrazide functionality. This strategy should be generally applicable for rapid, efficient site-specific protein labeling, protein immobilization, and preparation of highly pure functionalized proteins.


Assuntos
Boro/química , Compostos Heterocíclicos/química , Nitrogênio/química , Proteínas/química , Cinética , Modelos Moleculares , Conformação Proteica
5.
Bioconjug Chem ; 30(5): 1554-1564, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31026151

RESUMO

Precise control of covalent bond formation in the presence of multiple functional groups is pertinent in the development of many next-generation bioconjugates and materials. Strategies derived from bioorthogonal chemistries are contributing greatly in that regard; however, the gain of chemoselectivity is often compromised by the slow rates of many of these existing chemistries. Recent work on a variation of the classical aldehyde/ketone condensation based on ortho-carbonylphenylboronic acids has uncovered markedly accelerated rates compared to those of the simple carbonyl counterparts. The products of these reactions are distinct, often in the form of boron-nitrogen heterocycles. In particular, we have shown that 2-formylphenylboronic acid (2fPBA), when coupled with an α-amino-hydrazide, produces a unique zwitterionic and stable 2,3,1-benzodiazaborine derivative. In this work, we apply this chemistry to generate chemically defined and functional bioconjugates, herein illustrated with immunoconjugates. We show that an antibody and a fluorophore (as payload) equipped with the relevant reactive handles undergo rapid conjugation at near-stoichiometric ratios, displaying a reaction half-life of only ∼5 min with 2 equiv of the linker payload. Importantly, the reaction can be extended to multicomponent labeling by partnering with the popular strain-promoted azide-alkyne cycloaddition and tetrazine- trans-cyclooctene (Tz-TCO) ligation. The mutual orthogonality to both of these chemistries allows simultaneous triple bioorthogonal conjugations, a rare feat thus far that will widen the scope of various multilabeling applications. Further collaboration with the Tz-TCO reaction enables rapid one-pot synthesis of a site-specific dual-payload antibody conjugate. Altogether, we envision that the 2fPBA-α-amino-hydrazide ligation will facilitate efficient assembly of diverse bioconjugates and materials, enabling access to more complex modalities via partnership with other orthogonal chemistries.


Assuntos
Boro/química , Compostos Heterocíclicos/química , Nitrogênio/química , Azidas/química , Corantes Fluorescentes/química , Imunoconjugados/química
6.
Org Biomol Chem ; 15(36): 7543-7548, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28853481

RESUMO

A recent addition to the suite of fast bioorthogonal reactions combines hydrazines and hydroxylamines with ortho-carbonyl substituted phenylboronic acids. Carbohydrazides are easily incorporated into biomolecules, making them appealing substrates in these reactions. Here we show that simple alkyl carbohydrazides form a single product with ortho-formylphenylboronic acid in an organic solvent and in the solid state. The solution structures of the products formed from the carbohydrazides in buffered aqueous solution, however, are markedly different from those identified in the organic solvent and solid state. The reactants form a mixture of hydrazone and heterocyclic products, the relative composition of which varies with pH. The observed reversibility of bioconjugates using carbohydrazide can thus be explained by the reversibility of the boron-nitrogen bond in the heterocycle. In contrast, the inclusion of an α-amine into the carbohydrazide substrate yields a single product in which both nitrogens are bonded to boron. These tricyclic structures are the same in organic solvent, solid state and aqueous solution from pH 4 to pH 9. Bioconjugates formed with α-amino carbohydrazides are stable to SDS-PAGE, while those formed with simple alkyl carbohydrazides are not. We propose that the inclusion of an intramolecular stabilizing ligand into a carbohydrazide substrate is a generally applicable principle that may be exploited to form boronic acid-based bioconjugates with a defined structure and resistance to hydrolysis.

7.
Clin Obstet Gynecol ; 58(4): 885-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26398298

RESUMO

Many women who are breastfeeding also want to participate in exercise, but have concerns about the safety of their newborn. The following chapter reviews issues related to postpartum exercise and lactation. The goals of the chapter are to help clinicians understand the benefits of exercise, examine the impact of postpartum exercise on breastfeeding, and provide practical recommendations for exercise during the postpartum period in women who are breastfeeding.


Assuntos
Exercício Físico/fisiologia , Lactação/fisiologia , Mama/anatomia & histologia , Aleitamento Materno , Feminino , Guias como Assunto , Humanos , Período Pós-Parto
8.
J Labelled Comp Radiopharm ; 57(2): 78-81, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307484

RESUMO

The epothilones, including epothilones B and D, are macrocyclic lactones, which have potent cytotoxicities and promote the polymerization of tubulin to mictotubules by binding to and stabilizing the tubulin polymer. They have a very similar mechanism of action to paclitaxel (Taxol®). The determination of the microtubule-binding conformation of the epothilones is an important piece of information in designing improved analogs for possible clinical use, and internuclear distance information that will assist the determination of this conformation can be obtained by rotational echo double resonance (REDOR) NMR studies of microtubule-bound epothilones with appropriate stable isotope labels. Analogs of epothilone B and epothilone D with [(2) H3 ] and [(19) F] labels were prepared from an advanced precursor for potential use in REDOR NMR studies to determine internuclear distances in tubulin-bound ligand.


Assuntos
Deutério/química , Epotilonas/síntese química , Marcação por Isótopo , Moduladores de Tubulina/síntese química , Linhagem Celular Tumoral , Epotilonas/química , Epotilonas/farmacologia , Humanos , Ligação Proteica , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
9.
Biochemistry ; 52(13): 2328-36, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23473345

RESUMO

Paclitaxel (PTX) is a microtubule-stabilizing agent that is widely used in cancer chemotherapy. This structurally complex natural product acts by binding to ß-tubulin in assembled microtubules. The 2'-hydroxyl group in the flexible side chain of PTX is an absolute requirement for activity, but its precise role in the drug-receptor interaction has not been specifically investigated. The contribution of the 2'-OH group to the affinity and tubulin-assembly efficacy of PTX has been evaluated through quantitative analysis of PTX derivatives possessing side chain deletions: 2'-deoxy-PTX, N-debenzoyl-2'-deoxy-PTX, and baccatin III. The affinity of 2'-deoxy-PTX for stabilized microtubules was more than 100-fold lower than that of PTX and only ~3-fold greater than the microtubule affinity of baccatin III. No microtubule binding activity was detected for the analogue N-debenzoyl-2'-deoxy-PTX. The tubulin-assembly efficacy of each ligand was consistent with the microtubule binding affinity, as was the trend in cytotoxicities. Molecular dynamics simulations revealed that the 2'-OH group of PTX can form a persistent hydrogen bond with D26 within the microtubule binding site. The absence of this interaction between 2'-deoxy-PTX and the receptor can account for the difference in binding free energy. Computational analyses also provide a possible explanation for why N-debenzoyl-2'-deoxy-PTX is inactive, in spite of the fact that it is essentially a substituted baccatin III. We propose that the hydrogen bonding interaction between the 2'-OH group and D26 is the most important stabilizing interaction that PTX forms with tubulin in the region of the C-13 side chain. We further hypothesize that the substituents at the 3'-position function to orient the 2'-OH group for a productive hydrogen bonding interaction with the protein.


Assuntos
Microtúbulos/metabolismo , Paclitaxel/química , Paclitaxel/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Sítios de Ligação , Bovinos , Linhagem Celular , Humanos , Modelos Moleculares , Paclitaxel/análogos & derivados , Ligação Proteica , Taxoides/farmacologia
11.
Arch Pharm (Weinheim) ; 345(7): 535-48, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22592968

RESUMO

A series of novel 1-(3',4',5'-trimethoxybenzoyl)-3,5-diarylpyrazoline derivatives were synthesized and evaluated for their cytotoxic properties on different cancer cell lines and tubulin polymerization inhibitory activity. Compounds 6d and 6e exhibited remarkable cytotoxic activity against different cancer cell lines with good tubulin polymerization inhibitory activity. Compound 6d exhibited moderate selectivity toward renal cancer and breast cancer subpanels with selectivity ratios of 3.06 and 5.11, respectively, at the cytostatic activity (TGI) level. Compounds 6e and 6d achieved good tubulin polymerization inhibitory activity with IC(50) values of 17 and 40 µM, respectively. The photomicrographs made for compounds 6d and 6e on cellular microtubules indicated that the cytotoxicity of these compounds can be attributed to their ability to interfere with microtubule assembly. Molecular modeling studies involving compound 6e with the colchicine binding site of α,ß-tubulin revealed hydrogen-bonding and hydrophobic interactions with several amino acids in the colchicine binding site of ß-tubulin.


Assuntos
Antineoplásicos/síntese química , Pirazóis/síntese química , Moduladores de Tubulina/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microscopia Confocal , Microtúbulos/ultraestrutura , Modelos Moleculares , Estrutura Molecular , Pirazóis/química , Pirazóis/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
12.
Front Cell Dev Biol ; 10: 884287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712668

RESUMO

Tubulin, the main component of microtubules, is an α-ß heterodimer that contains one of multiple isotypes of each monomer. Although the isotypes of each monomer are very similar, the beta tubulin isotype found in blood cells is significantly divergent in amino acid sequence compared to other beta tubulins. This isotype, beta class VI, coded by human gene TUBB1, is found in hematologic cells and is recognized as playing a role in platelet biogenesis and function. Tubulin from the erythrocytes of the chicken Gallus gallus contains almost exclusively ßVI tubulin. This form of tubulin has been reported to differ from brain tubulin in binding of colchicine-site ligands, previously thought to be a ubiquitous characteristic of tubulin from higher eukaryotes. In this study, we sought to gain a better understanding of the structure-activity relationship of the colchicine site of this divergent isotype, using chicken erythrocyte tubulin (CeTb) as the model. We developed a fluorescence-based assay to detect binding of drugs to the colchicine site and used it to study the interaction of 53 colchicine-site ligands with CeTb. Among the ligands known to bind at this site, most colchicine derivatives had lower affinity for CeTb compared to brain tubulin. Remarkably, many of the benzimidazole class of ligands shows increased affinity for CeTb compared to brain tubulin. Because the colchicine site of human ßVI tubulin is very similar to that of chicken ßVI tubulin, these results may have relevance to the effect of anti-cancer agents on hematologic tissues in humans.

13.
Nat Commun ; 13(1): 2422, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504916

RESUMO

Chronic kidney diseases and acute kidney injury are mechanistically distinct kidney diseases. While chronic kidney diseases are associated with podocyte injury, acute kidney injury affects renal tubular epithelial cells. Despite these differences, a cardinal feature of both acute and chronic kidney diseases is dysregulated actin cytoskeleton. We have shown that pharmacological activation of GTPase dynamin ameliorates podocyte injury in murine models of chronic kidney diseases by promoting actin polymerization. Here we establish dynamin's role in modulating stiffness and polarity of renal tubular epithelial cells by crosslinking actin filaments into branched networks. Activation of dynamin's crosslinking capability by a small molecule agonist stabilizes the actomyosin cortex of the apical membrane against injury, which in turn preserves renal function in various murine models of acute kidney injury. Notably, a dynamin agonist simultaneously attenuates podocyte and tubular injury in the genetic murine model of Alport syndrome. Our study provides evidence for the feasibility and highlights the benefits of novel holistic nephron-protective therapies.


Assuntos
Injúria Renal Aguda , Podócitos , Insuficiência Renal Crônica , Citoesqueleto de Actina , Injúria Renal Aguda/prevenção & controle , Animais , Dinaminas , Feminino , Humanos , Rim/fisiologia , Masculino , Camundongos , Insuficiência Renal Crônica/tratamento farmacológico
14.
Bioconjug Chem ; 22(10): 1954-61, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21932849

RESUMO

Hydrazone formation and similar reactions are highly versatile and specific, but their application to biological systems has been limited by their characteristically slow reaction kinetics at neutral pH. Catalysis of these reactions through imine formation with aromatic amines such as aniline has broadened the applicability of these reactions to biomolecular labeling. High concentrations of the catalyst are necessary, which may be incompatible with the native structure of certain proteins. In this study, we investigated the utility of 4-aminophenylalanine (4a-Phe) as a catalyst for these reactions. We find that 4a-Phe is nearly as effective as aniline in catalyzing hydrazone formation between the reactive amino acid 3-formyltyrosine (3f-Tyr) and hydrazine-containing fluorophores, both free in solution and incorporated into the protein tubulin. The catalyst 4a-Phe maintains ∼70% of the catalytic efficacy of aniline and is less detrimental to the native structure of tubulin. Examination of the temperature dependence of imine formation between 3f-Tyr and 4a-Phe shows an increase in imine concentration accompanying a decrease in temperature, confirming the exothermic nature of the equilibrium reaction. Interestingly, decreasing the temperature of the 4a-Phe-catalyzed hydrazone reaction between 3f-Tyr and the fluorophore 7-hydrazinyl-4-methylcoumarin increases the overall rate of the reaction. This result indicates that the temperature dependence of the catalyst-aldehyde equilibrium is greater than the temperature dependence of the rate constant for hydrazone formation from this intermediate, and that the rate of hydrazone formation a direct function of the concentration of the intermediate imine. These results provide a platform for conducting nucleophilic catalysis under conditions that are more compatible with biomolecular targets than previously demonstrated, thereby expanding the utility of hydrazone ligations in biological systems.


Assuntos
Hidrazonas/química , Fenilalanina/análogos & derivados , Catálise , Temperatura Baixa , Concentração de Íons de Hidrogênio , Fenilalanina/química
15.
Chemistry ; 17(52): 14792-804, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22127984

RESUMO

A series of conformationally restrained epothilone analogues with a short bridge between the methyl groups at C6 and C8 was designed to mimic the binding pose assigned to our recently reported EpoA-microtubule binding model. A versatile synthetic route to these bridged epothilone analogues has been successfully devised and implemented. Biological evaluation of the compounds against A2780 human ovarian cancer and PC3 prostate cancer cell lines suggested that the introduction of a bridge between C6-C8 reduced potency by 25-1000 fold in comparison with natural epothilone D. Tubulin assembly measurements indicate these bridged epothilone analogues to be mildly active, but without significant microtubule stabilization capacity. Molecular mechanics and DFT energy evaluations suggest the mild activity of the bridged epo-analogues may be due to internal conformational strain.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Epotilonas/química , Epotilonas/síntese química , Epotilonas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Modelos Moleculares , Ligação Proteica , Relação Estrutura-Atividade
16.
Bioorg Med Chem ; 19(17): 5247-54, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21802957

RESUMO

The design, synthesis, and biological evaluation of a simplified fluorescently labeled discodermolide analogue possessing a dimethylaminobenzoyl fluorophore has been achieved. Stereoselective Suzuki coupling and Horner-Wadsworth-Emmons reaction comprised the key tactics for its construction. The analogue exhibited qualitatively similar activity to paclitaxel in a tubulin assembly assay, and it can thus be used as a fluorescent molecular probe to explore the local environment of the discodermolide binding site on tubulin. The results of fluorescence measurements on the tubulin-bound analogue are reported.


Assuntos
Alcanos/química , Antineoplásicos/química , Carbamatos/química , Corantes Fluorescentes/química , Lactonas/química , Pironas/química , Tubulina (Proteína)/química , Alcanos/metabolismo , Alcanos/toxicidade , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Carbamatos/metabolismo , Carbamatos/toxicidade , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Lactonas/metabolismo , Lactonas/toxicidade , Paclitaxel/química , Paclitaxel/toxicidade , Ligação Proteica , Pironas/metabolismo , Pironas/toxicidade , Tubulina (Proteína)/metabolismo
17.
Bioorg Med Chem ; 19(24): 7664-78, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22071526

RESUMO

A series of compounds designed to adopt a conformation similar to the tubulin-binding T-Taxol conformation of the anticancer drug paclitaxel has been synthesized. Both the internally bridged analogs 37-39, 41 and the open-chain analogs 27-29 and 43 were prepared. The bridged analogs 37-39 and 41 were synthesized by Grubbs' metatheses of compounds 30-32 and 33, which, in turn, were prepared by coupling ß-lactams 24-26 with alcohols 22 and 23. Both the bridged and the open-chain analogs showed moderate to good cytotoxicity.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Paclitaxel/análogos & derivados , Paclitaxel/farmacologia , Antineoplásicos Fitogênicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Neoplasias/tratamento farmacológico , Paclitaxel/síntese química , Paclitaxel/química , Tubulina (Proteína)/metabolismo
18.
J Fluoresc ; 21(1): 347-54, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20886269

RESUMO

Derivatives of 4,4-difluoro-4-bora-3a,4a,diaza-s-indacene (BODIPY® or BDP) that possess a hydrazine substituent on position 5 are potential "turn-on" fluorophores for labeling aldehydes The unnatural amino acid L-3-formyltyrosine can be incorporated into a protein or peptide; thus, these hydrazines are potentially site specific labels for such polymers. In this work, model compounds were synthesized to assess whether the photochemical properties of the BDP-hydrazone would be suitable for protein labeling. Hydrazones were synthesized from the fluorophore 3-chloro-5-hydrazino-BDP and different aldehydes, and the absorption and emission spectra of the products were compared. The hydrazone of an unsubstituted aromatic aldehyde displays absorption and emission maxima (531 nm and 559 nm, respectively in dioxane) that are red shifted relative to those of a hydrazone from an aliphatic aldehyde (513 nm and 543 nm, respectively, in dioxane) and an increased quantum yield (0.21 vs. 0.11, respectively, in dioxane). The presence of a hydroxyl group ortho- to the aldehyde produces a hydrazone in which the absorption and emission maxima are slightly red shifted (528 nm and 564 nm, respectively in dioxane) from the unsubstituted aromatic hydrazone, but the quantum yields of the two hydrazones are equivalent. Thus, an ortho-hydroxy substituted aromatic aldehyde is a suitable electrophile for "turn on" protein labeling using the hydrazino-BDP. The specificity of this labeling reaction for the unnatural amino acid was demonstrated through fluorescent labeling of just the 3-formyltyrosine-containing α-subunit of α,ß-tubulin.


Assuntos
Compostos de Boro/química , Hidrazonas/química , Porfobilinogênio/análogos & derivados , Eletroforese em Gel de Poliacrilamida , Cinética , Espectroscopia de Ressonância Magnética , Porfobilinogênio/química
19.
J Fluoresc ; 21(6): 2173-84, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21748237

RESUMO

Aurones, derivatives of 2-benylidenebenzofuran-3(2H)-one, are natural products that serve as plant pigments. There have been reports that some of these substances fluoresce, but little information about their optical properties is in the literature. In this report, series of aurone derivatives were synthesized as possible fluorescent probes that can be excited by visible light. We found that an amine substituent shifted the lowest energy absorption band from the near-UV to the visible region of the electromagnetic spectrum. Four amine-substituted aurone derivatives were synthesized to explore the effect of this substituent on the absorption and emission properties of the aurone chromophore. The emission maxima and intensities of the molecules are strongly dependent on the nature of the substituent and the solvent polarity. Overall, the emission intensity increases and the maximum wavelength decreases in less polar solvents; thus, the aurones may be useful probes for hydrophobic sites on biological molecules. A limited investigation with model protein, nucleic acid and fixed cells supports this idea. It is known that the sulfur analog of aurone can undergo photo-induced E/Z isomerization. This possibility was investigated for one of the aminoaurones, which was observed to reversible photoisomerize. The two isomers have similar absorption spectra, but the emission properties are distinct. We conclude that appropriately substituted aurones are potentially useful as biological probes and photoswitches.


Assuntos
Benzofuranos/química , DNA/química , Corantes Fluorescentes/química , Soroalbumina Bovina/química , Animais , Benzofuranos/síntese química , Linhagem Celular Tumoral , Corantes Fluorescentes/síntese química , Humanos , Substâncias Macromoleculares/química , Masculino , Microscopia Confocal , Estrutura Molecular , Peso Molecular , Salmão , Espectrofotometria Ultravioleta , Espermatozoides/química , Estereoisomerismo
20.
ACS Sens ; 6(7): 2523-2528, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34214393

RESUMO

Drug-induced kidney injury frequently leads to aborted clinical trials and drug withdrawals. Sufficiently sensitive sensors capable of detecting mild signs of chemical insult in cell-based screening assays are critical to identifying and eliminating potential toxins in the preclinical stage. Oxidative stress is a common early manifestation of chemical toxicity, and biomolecule carbonylation is an irreversible repercussion of oxidative stress. Here, we present a novel fluorogenic assay using a sensor, TFCH, that responds to biomolecule carbonylation and efficiently detects modest forms of renal injury with much greater sensitivity than standard assays for nephrotoxins. We demonstrate that this sensor can be deployed in live kidney cells and in renal tissue. Our robust assay may help inform preclinical decisions to recall unsafe drug candidates. The application of this sensor in identifying and analyzing diverse pathologies is envisioned.


Assuntos
Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa