RESUMO
BACKGROUND: Non-enveloped viruses, which lack a lipid envelope, display higher resistance to disinfectants, soaps and sanitizers compared to enveloped viruses. The capsids of these viruses are highly stable and symmetric protein shells that resist inactivation by commonly employed virucidal agents. This group of viruses include highly transmissible human pathogens such as Rotavirus, Poliovirus, Foot and Mouth Disease Virus, Norovirus and Adenovirus; thus, devising appropriate strategies for chemical disinfection is essential. RESULTS: In this study, we tested a mild, hypoallergenic combination of a denaturant, alcohol, and organic acid (3.2% citric acid, 1% urea and 70% ethanol, pH4) on two representative non-enveloped viruses - Human Adenovirus 5 (HAdV5) and Feline Calicivirus (FCV)- and evaluated the pathways of capsid neutralization using biophysical methods. The conformational shifts in the capsid upon chemical treatment were studied using Differential Scanning Calorimetry (DSC), while the morphological alterations were visualized concurrently using Transmission Electron Microscopy (TEM). We found that while treatment of purified HAdV5 particles with a formulation resulted in thermal instability and, large scale aggregation; similar treatment of FCV particles resulted in complete collapse of the capsids. Further, while individual components of the formulation caused significant damage to the capsids, a synergistic action of the whole formulation was evident against both non-enveloped viruses tested. CONCLUSIONS: The distinct effects of the chemical treatment on the morphology of HAdV5 and FCV suggests that non-enveloped viruses with icosahedral geometry can follow different morphological pathways to inactivation. Synergistic effect of whole formulation is more effective compared to individual components. Molecular level understanding of inactivation pathways may result in the design and development of effective mass-market formulations for rapid neutralization of non-enveloped viruses.
Assuntos
Adenovírus Humanos , Calicivirus Felino , Capsídeo , Inativação de Vírus , Inativação de Vírus/efeitos dos fármacos , Calicivirus Felino/efeitos dos fármacos , Calicivirus Felino/fisiologia , Adenovírus Humanos/efeitos dos fármacos , Adenovírus Humanos/fisiologia , Adenovírus Humanos/química , Adenovírus Humanos/ultraestrutura , Capsídeo/efeitos dos fármacos , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Desinfetantes/farmacologia , Humanos , Microscopia Eletrônica de Transmissão , Ureia/farmacologia , Ureia/química , Ureia/análogos & derivados , Ácido Cítrico/farmacologia , Ácido Cítrico/química , Etanol/farmacologia , Animais , Varredura Diferencial de CalorimetriaRESUMO
The recovery of a complex-valued exit wavefront from its Fourier transform magnitude is challenging due to the stagnation problems associated with iterative phase retrieval algorithms. Among the various stagnation artifacts, the twin-image stagnation is the most difficult to address. The upright object and its inverted and complex-conjugated twin correspond to the identical Fourier magnitude data and hence appear simultaneously in the iterative solution. We show that the twin stagnation problem can be eliminated completely if a coherent beam with charge-1 vortex phase is used for illumination. Unlike the usual plane wave illumination case, a charge-1 vortex illumination intentionally introduces an isolated zero near the zero spatial frequency region, where maximal energy in the Fourier space is usually concentrated for most natural objects. The early iterations of iterative phase retrieval algorithms are observed to develop a clockwise or anti-clockwise vortex in the vicinity of this isolated zero. Once the Fourier transform of the solution latches onto a specific vortex profile in the neighborhood of this intentionally introduced intensity zero in early iterations, the solution quickly adjusts to the corresponding twin (upright or inverted) and further iterations are not observed to bring the other twin into the reconstruction. Our simulation studies with the well-known hybrid input-output (HIO) algorithm show that the solution always converges to one of the twins within a few hundred iterations when vortex phase illumination is used. Using a clockwise or anti-clockwise vortex phase as an initial guess is also seen to deterministically lead to a solution consisting of the corresponding twin. The resultant solution still has some faint residual artifacts that can be addressed via the recently introduced complexity guidance methodology. There is an additional vortex phase in the final solution that can simply be subtracted out to obtain the original test object. The near guaranteed convergence to a twin-stagnation-free solution with vortex illumination as described here is potentially valuable for deploying practical imaging systems that work based on the iterative phase retrieval algorithms.
RESUMO
Nitrogen (N) limits crop yield, and improvement of N nutrition remains a key goal for crop research; one approach to improve N nutrition is identifying plant-interacting, N2-fixing microbes. Rhodotorula mucilaginosa JGTA-S1 is a basidiomycetous yeast endophyte of narrowleaf cattail (Typha angustifolia). JGTA-S1 could not convert nitrate or nitrite to ammonium but harbors diazotrophic (N2-fixing) endobacteria (Pseudomonas stutzeri) that allow JGTA-S1 to fix N2 and grow in a N-free environment; moreover, P. stutzeri dinitrogen reductase was transcribed in JGTA-S1 even under adequate N. Endobacteria-deficient JGTA-S1 had reduced fitness, which was restored by reintroducing P. stutzeri JGTA-S1 colonizes rice (Oryza sativa), significantly improving its growth, N content, and relative N-use efficiency. Endofungal P. stutzeri plays a significant role in increasing the biomass and ammonium content of rice treated with JGTA-S1; also, JGTA-S1 has better N2-fixing ability than free-living P. stutzeri and provides fixed N to the plant. Genes involved in N metabolism, N transporters, and NODULE INCEPTION-like transcription factors were upregulated in rice roots within 24 h of JGTA-S1 treatment. In association with rice, JGTA-S1 has a filamentous phase and P. stutzeri only penetrated filamentous JGTA-S1. Together, these results demonstrate an interkingdom interaction that improves rice N nutrition.
Assuntos
Bactérias/metabolismo , Basidiomycota/metabolismo , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Oryza/metabolismo , Oryza/microbiologia , Rhodotorula/metabolismo , Compostos de Amônio , Basidiomycota/crescimento & desenvolvimento , Endófitos/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Pseudomonas/metabolismo , Pseudomonas stutzeri/metabolismo , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/isolamento & purificação , Simbiose , TranscriptomaRESUMO
The importance of disulphide bond in mediating viral peptide entry into host cells is well known. In the present work, we elucidate the role of disulphide (SS) bond in partitioning mechanism of membrane-active Hepatitis A Virus-2B (HAV-2B) peptide, which harbours three cysteine residues promoting formation of multiple SS-bonded states. The inclusion of SS-bond not only results in a compact conformation but also induces distorted α-helical hairpin geometry in comparison to SS-free state. Owing to these, the hydrophobic residues get buried, restricting the insertion of SS-bonded HAV-2B peptide into lipid packing defects and thus the partitioning of the peptide is completely or partly abolished. In this way, the disulphide bond can potentially regulate the partitioning of HAV-2B peptide such that the membrane remodelling effects of this viral peptide are significantly reduced. The current findings may have potential implications in drug designing, targeting the HAV-2B protein by promoting disulphide bond formation within its membrane-active region.
Assuntos
Vírus da Hepatite A , Peptídeos , Cisteína/química , Dissulfetos/química , Dissulfetos/metabolismo , Vírus da Hepatite A/química , Vírus da Hepatite A/metabolismo , Membranas , Domínios ProteicosRESUMO
[This corrects the article DOI: 10.1371/journal.pbio.2006128.].
RESUMO
BACKGROUND: The quasi-enveloped picornavirus, Hepatitis A Virus (HAV), causes acute hepatitis in humans and infects approximately 1.5 million individuals a year, which does not include the asymptomatically infected population. Several severe outbreaks in developing nations in recent years have highlighted the reduction in HAV endemicity, which increases the risk of infections in the vulnerable population. The current HAV vaccines are based on growing wildtype or attenuated virus in cell culture, which raises the cost of production. For generation of cheaper, subunit vaccines or strategies for antibody-based diagnostics, production of viral structural proteins in recombinant form in easily accessible expression systems is a priority. RESULTS: We attempted several strategies for recombinant production of one of the major capsid proteins VP1, from HAV, in the E. coli expression system. Several efforts resulted in the formation of soluble aggregates or tight association of VP1 with the bacterial chaperone GroEL. Correctly folded VP1 was eventually generated in a discrete oligomeric form upon purification of the protein from inclusion bodies and refolding. The oligomers resemble oligomers of capsid proteins from other picornaviruses and appear to have the correct secondary and antigenic surface structure. CONCLUSIONS: VP1 oligomers generated in the bacterial expression system can be utilized for understanding the molecular pathway of HAV capsid assembly and may also have potential biomedical usages in prevention and diagnostics of HAV infections.
Assuntos
Proteínas do Capsídeo , Vírus da Hepatite A , Proteínas Estruturais Virais , Capsídeo/química , Proteínas do Capsídeo/genética , Escherichia coli/genética , Vírus da Hepatite A/genética , Proteínas Estruturais Virais/genéticaRESUMO
The mitochondrial F-type ATP synthase, a multisubunit nanomotor, is critical for maintaining cellular ATP levels. In T. gondii and other apicomplexan parasites, many subunit components necessary for proper assembly and functioning of this enzyme appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomeric (approximately 600 kDa) and dimeric (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits a, b, and d can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid, and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex could facilitate the development of novel antiparasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.
Assuntos
ATPases Mitocondriais Próton-Translocadoras/metabolismo , Subunidades Proteicas/metabolismo , Toxoplasma/enzimologia , Sequência de Aminoácidos , Animais , Sequência Conservada , Regulação da Expressão Gênica , Variação Genética , Hemaglutininas/metabolismo , Mitocôndrias/metabolismo , Parasitos/metabolismo , Filogenia , Plasmodium falciparum/metabolismo , Multimerização Proteica , Proteoma/metabolismo , Proteômica , Proteínas de Protozoários/química , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Understanding viral peptide detection and partitioning and the subsequent host membrane composition-based response is essential for gaining insights into the viral mechanism. Here, we probe the crucial role of the presence of membrane lipid packing defects, depending on the membrane composition, in allowing the viral peptide belonging to C-terminal Hepatitis A Virus-2B (HAV-2B) to detect, attach and subsequently partition into host cell membrane mimics. Using molecular dynamics simulations, we conclusively show that the hydrophobic residues in the viral peptide detect transiently present lipid packing defects, insert themselves into such defects, form anchor points and facilitate the partitioning of the peptide, thereby inducing membrane disruption. We also show that the presence of cholesterol significantly alters such lipid packing defects, both in size and in number, thus mitigating the partitioning of the membrane active viral peptide into cholesterol-rich membranes. Our results are in excellent agreement with previously published experimental data and further explain the role of lipid defects in understanding such data. These results show differential ways in which the presence and absence of cholesterol can alter the permeability of the host membranes to the membrane active peptide component of HAV-2B virus, via lipid packing defects, and can possibly be a part of the general membrane detection mechanism for viroporins.
Assuntos
Vírus da Hepatite A , Membrana Celular , Colesterol , Bicamadas Lipídicas , Lipídeos de Membrana , Simulação de Dinâmica Molecular , PeptídeosRESUMO
Membrane fusion, a key step in the early stages of virus propagation, allows the release of the viral genome in the host cell cytoplasm. The process is initiated by fusion peptides that are small, hydrophobic components of viral membrane-embedded glycoproteins and are typically conserved within virus families. Here, we attempted to identify the correct fusion peptide region in the Spike protein of SARS-CoV-2 by all-atom molecular dynamics simulations of dual membrane systems with varied oligomeric units of putative candidate peptides. Of all of the systems tested, only a trimeric unit of a 40-amino-acid region (residues 816-855 of SARS-CoV-2 Spike) was effective in triggering the initial stages of membrane fusion, within 200 ns of simulation time. Association of this trimeric unit with dual membranes resulted in the migration of lipids from the upper leaflet of the lower bilayer toward the lower leaflet of the upper bilayer to create a structural unit reminiscent of a fusion bridge. We submit that residues 816-855 of Spike represent the bona fide fusion peptide of SARS-CoV-2 and that computational methods represent an effective way to identify fusion peptides in viral glycoproteins.
Assuntos
COVID-19/metabolismo , Fusão de Membrana , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , COVID-19/virologia , Interações Hospedeiro-Patógeno , Humanos , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Multimerização Proteica , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/químicaRESUMO
SARS-CoV-2 has posed global challenge for healthcare due to COVID-19. The main protease (Mpro) of this virus is considered as a major target for drug development efforts. In this work, we have used virtual screening approach with molecular dynamics simulations to identify high affinity and low molecular weight alternatives of boceprevir, a repurposed drug currently being evaluated against Mpro. Out of 180 compounds screened, two boceprevir analogs (PubChem ID: 57841991 and 58606278) were reported as potential alternatives with comparable predicted protease inhibitor potential and pharmacological properties. Further experimental validation of the reported compounds may contribute to the ongoing investigation of boceprevir.
RESUMO
The stability of icosahedral viruses is crucial for protecting the viral genome during transit; however, successful infection requires eventual disassembly of the capsid. A comprehensive understanding of how stable, uniform icosahedrons disassemble remains elusive, mainly due to the complexities involved in isolating transient intermediates. We utilized incremental heating to systematically characterize the disassembly pathway of a model nonenveloped virus and identified an intriguing link between virus maturation and disassembly. Further, we isolated and characterized two intermediates by cryo-electron microscopy and three-dimensional reconstruction, without imposing icosahedral symmetry. The first intermediate displayed a series of major, asymmetric alterations, whereas the second showed that the act of genome release, through the 2-fold axis, is actually confined to a small section on the capsid. Our study thus presents a comprehensive structural analysis of nonenveloped virus disassembly and emphasizes the asymmetric nature of programmed conformational changes.IMPORTANCE Disassembly or uncoating of an icosahedral capsid is a crucial step during infection by nonenveloped viruses. However, the dynamic and transient nature of the disassembly process makes it challenging to isolate intermediates in a temporal, stepwise manner for structural characterization. Using controlled, incremental heating, we isolated two disassembly intermediates: "eluted particles" and "puffed particles" of an insect nodavirus, Flock House virus (FHV). Cryo-electron microscopy and three-dimensional reconstruction of the FHV disassembly intermediates indicated that disassembly-related conformational alterations are minimally global and largely local, leading to asymmetry in the particle and eventual genome release without complete disintegration of the icosahedron.
Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Nodaviridae/metabolismo , Animais , Linhagem Celular , Microscopia Crioeletrônica/métodos , Vírus de DNA/metabolismo , Drosophila melanogaster , Genoma Viral/genética , Modelos Moleculares , Nodaviridae/genética , Vírion/metabolismo , Montagem de Vírus/fisiologiaRESUMO
The rational design and synthesis of molecules with functional supramolecular assemblies continues to be a challenging endeavor. Self-assembled nano- and microstructures from natural building blocks are considered more appropriate for medical applications due to their biocompatible nature. We report for the first time a simple redox-responsive dipeptide that self-assembles to form vesicles in aqueous medium. The experimental results based on the control compound and all-atom molecular dynamics (MD) simulations support the mechanism of association through intermolecular π-π interactions between the indole rings of tryptophan residues. These peptide vesicles showed a DOX loading capacity of â¼16% (w/w) and redox-triggered controlled release of the packaged drug. The drug-loaded vesicles were able to penetrate into MDA-MB-231 and HeLa cells, and release payload, suggesting their putative use as chemotherapeutic delivery vehicles. These natural peptide-based carriers disassemble inside cells due to the high cytosolic GSH concentration, and the resultant Cys-Trp dipeptide is degradable. The minimalistic peptide design presented here, coupled with the propensity to form vesicles that can encapsulate the chemotherapeutic drug, opens up unlimited potential for engineering targeted sustained-release drug delivery vehicles.
Assuntos
Dipeptídeos/química , Portadores de Fármacos/química , Espaço Intracelular/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/metabolismo , Humanos , Simulação de Dinâmica Molecular , Oxirredução , Conformação ProteicaRESUMO
Non-enveloped viruses require membrane-penetrating peptides for gaining entry inside the cytoplasm of host cells during the early stages of infection. Although several such peptides have been identified as essential components for non-enveloped virus entry, the molecular mechanism of membrane destabilization by these peptides is not well established. Here, we investigate the putative membrane penetrating peptide VP4 of Hepatitis A Virus (HAV) using a combination of molecular dynamics simulation and mutational studies. Using all-atom molecular dynamics simulation, we show that effective membrane disruption requires specific oligomeric forms (pentameric or hexameric) of VP4, while the monomeric form cannot cause similar disruption in target membranes. Reduction in hydrophobicity of VP4 significantly affects membrane penetration properties in silico, with even the oligomeric associations showing decreased membrane penetration efficiency. A synthetic peptide with a concurrent reduction in hydrophobicity is unable to disrupt liposomes in vitro, while the introduction of these mutations in the context of the viral genome adversely affects the propagation of HAV in cell culture. Taken together, our studies highlight hydrophobicity and oligomerization as some of the crucial mechanistic aspects of membrane penetration by capsid components of non-enveloped viruses.
Assuntos
Proteínas do Capsídeo/metabolismo , Membrana Celular/metabolismo , Vírus da Hepatite A , Interações Hidrofóbicas e Hidrofílicas , Multimerização Proteica , Sequência de Aminoácidos , Linhagem Celular , Proliferação de Células , Simulação de Dinâmica Molecular , Estrutura Quaternária de ProteínaRESUMO
UNLABELLED: Membrane-active peptides, components of capsid structural proteins, assist viruses in overcoming the host membrane barrier in the initial stages of infection. Several such peptides have been identified, and their roles in membrane fusion or disruption have been characterized through biophysical studies. In several members of the Picornaviridae family, the role of the VP4 structural peptide in cellular-membrane penetration is well established. However, there is not much information on the membrane-penetrating capsid components of hepatitis A virus (HAV), an unusual member of this family. The VP4 peptide of HAV differs from its analogues in other picornaviruses in being significantly shorter in length and in lacking a signal for myristoylation, thought to be a critical requisite for VP4-mediated membrane penetration. Here we report, for the first time, that the atypical VP4 in HAV contains significant membrane-penetrating activity. Using a combination of biophysical assays and molecular dynamics simulation studies, we show that VP4 integrates into membrane vesicles through its N-terminal region to finally form discrete pores of 5- to 9-nm diameter, which induces leakage in the vesicles without altering their overall size or shape. We further demonstrate that the membrane activity of VP4 is specific toward vesicles mimicking the lipid content of late endosomes at acidic pH. Taken together, our data indicate that VP4 might be essential for the penetration of host endosomal membranes and release of the viral genome during HAV entry. IMPORTANCE: Hepatitis A virus causes acute hepatitis in humans through the fecal-oral route and is particularly prevalent in underdeveloped regions with poor hygienic conditions. Although a vaccine for HAV exists, its high cost makes it unsuitable for universal application in developing countries. Studies on host-virus interaction for HAV have been hampered due to a lack of starting material, since the virus is extremely slow growing in culture. Among the unknown aspects of the HAV life cycle is its manner of host membrane penetration, which is one of the most important initial steps in viral infection. Here, we present data to suggest that a small peptide, VP4, a component of the HAV structural polyprotein, might be essential in helping the viral genome cross cell membranes during entry. It is hoped that this work might help in elucidating the manner of initial host cell interaction by HAV.
Assuntos
Vírus da Hepatite A/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus , Fenômenos Biofísicos , Vírus da Hepatite A/química , Lipossomos , Simulação de Dinâmica Molecular , Proteínas Virais/químicaRESUMO
RNA bacteriophage MS2-derived virus-like particles (VLPs) have been widely used in biomedical research as model systems to study virus assembly, structure-function relationships, vaccine development, and drug delivery. Considering the diverse utility of these VLPs, a systemic engineering approach has been utilized to generate smaller particles with optimal serum stability and tissue penetrance. Additionally, it is crucial to demonstrate the overall stability of these mini MS2 VLPs, ensuring cargo protection until they reach their target cell/organ. However, no detailed analysis of the thermal stability and heat-induced disassembly of MS2 VLPs has yet been attempted. In this work, we investigated the thermal stability of both wild-type (WT) MS2 VLP and its "mini" variant containing S37P mutation (mini MS2 VLP). The mini MS2 VLP exhibits a higher capsid melting temperature (Tm) when compared to its WT MS2 VLP counterpart, possibly attributed to its smaller interdimer angle. Our study presents that the thermal unfolding of MS2 VLPs follows a sequential process involving particle destabilization, nucleic acid exposure/melting, and disassembly of VLP. This observation underscores the disruption of cooperative intersubunit interactions and protein-nucleic acid interactions, shedding light on the mechanism of heat-induced VLP disassembly.
Assuntos
Levivirus , Levivirus/genética , Levivirus/química , Levivirus/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Temperatura , Mutação , Temperatura Alta , Vírion/metabolismo , Vírion/química , Vírion/genética , Capsídeo/metabolismo , Capsídeo/químicaRESUMO
Rhodotorula mucilaginosa JGTA-S1 is a yeast strain capable of fixing nitrogen and improving nitrogen nutrition in rice plants because of its nitrogen-fixing endobacteria, namely Stutzerimonas (Pseudomonas) stutzeri and Bradyrhizobium sp. To gain a deeper understanding of yeast endosymbionts, we conducted a whole-genome shotgun metagenomic analysis of JGTA-S1 cells grown under conditions of nitrogen sufficiency and deficiency. Our results showed that the endosymbiont population varied depending on the nitrogen regime. Upon mechanical disruption of yeast cells, we obtained endosymbionts in culturable form viz. Bacillus velezensis and Staphylococcus sp. under nitrogen-replete conditions and Lysinibacillus telephonicus., Brevibacillus sp., and Niallia circulans under nitrogen-depleted conditions. S. stutzeri and Bradyrhizobium sp. the previously reported endosymbionts remained unculturable. The culturable endosymbionts Staphylococcus sp. and Bacillus velezensis appear to possess genes for dissimilatory nitrate reduction (DNRA), an alternative pathway for ammonia synthesis. However, our findings suggest that these endosymbionts are facultative as they survive outside the host. The fitness of the yeast was not affected by curing of these microbes. Curing the yeast diazotrophic endosymbionts took a toll on its fitness. Our results also showed that the populations of S. stutzeri and B. velezensis increased significantly under nitrogen-depleted conditions compared to nitrogen-sufficient conditions. The importance of DNRA and nitrogen fixation is also reflected in the metagenomic reads of JGTA-S1.
RESUMO
Although virus capsids appear as rigid, symmetric particles in experimentally determined structures; biochemical studies suggest a significant degree of structural flexibility in the particles. We carried out all-atom simulations on the icosahedral capsid of an insect virus, Flock House Virus, which show intriguing differences in the degree of flexibility of quasi-equivalent capsid subunits consistent with previously described biological behaviour. The flexibility of all the ß and γ subunits of the protein and RNA fragments is analysed and compared. Both γA subunit and RNA fragment exhibit higher flexibility than the γB and γC subunits. The capsid shell is permeable to the bidirectional movement of water molecules, and the movement is heavily influenced by the geometry of the capsid shell along specific symmetry axes. In comparison to the symmetry axes along I5 and I3, the I2 axis exhibits a slightly higher water content. This enriched water environment along I2 could play a pivotal role in facilitating the structural transitions necessary for RNA release, shedding some light on the intricate and dynamic processes underlying the viral life cycle. Our study suggests that the physical characterization of whole virus capsids is the key to identifying biologically relevant transition states in the virus life cycle and understanding the basis of virus infectivity.
Assuntos
Capsídeo , Subunidade gama Comum de Receptores de Interleucina , Capsídeo/química , Capsídeo/metabolismo , Subunidade gama Comum de Receptores de Interleucina/análise , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/metabolismo , RNA/metabolismo , Água/metabolismoRESUMO
To celebrate the 50th anniversary of Cell Press and the Cell special issue focusing on structural biology, we want to highlight the rapid progress of cryo-EM related research in India in this collection of Voices. We have asked structural biologists to introduce their research and the national cryo-EM facilities throughout the country.
Assuntos
Microscopia Crioeletrônica , ÍndiaRESUMO
The ever-evolving and versatile VLP technology is becoming an increasingly popular area of science. This study presents surface decorated reporter-tagged VLPs of CHIKV, an enveloped RNA virus of the genus alphavirus and its applications. Western blot, IFA and live-cell imaging confirm the expression of reporter-tagged CHIK-VLPs from transfected HEK293Ts. CryoEM micrographs reveal particle diameter as â¼67nm and 56-70 nm, respectively, for NLuc CHIK-VLPs and mCherry CHIK-VLPs. Our study demonstrates that by exploiting NLuc CHIK-VLPs as a detector probe, robust ratiometric luminescence signal in CHIKV-positive sera compared to healthy controls can be achieved swiftly. Moreover, the potential activity of the Suramin drug as a CHIKV entry inhibitor has been validated through the reporter-tagged CHIK-VLPs. The results reported in this study open new avenues in the eVLPs domain and offer potential for large-scale screening of clinical samples and antiviral agents targeting entry of CHIKV and other alphaviruses.