Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 287(41): 34202-11, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22902625

RESUMO

Repair of oxidized base lesions in the human genome, initiated by DNA glycosylases, occurs via the base excision repair pathway using conserved repair and some non-repair proteins. However, the functions of the latter noncanonical proteins in base excision repair are unclear. Here we elucidated the role of heterogeneous nuclear ribonucleoprotein-U (hnRNP-U), identified in the immunoprecipitate of human NEIL1, a major DNA glycosylase responsible for oxidized base repair. hnRNP-U directly interacts with NEIL1 in vitro via the NEIL1 common interacting C-terminal domain, which is dispensable for its enzymatic activity. Their in-cell association increases after oxidative stress. hnRNP-U stimulates the NEIL1 in vitro base excision activity for 5-hydroxyuracil in duplex, bubble, forked, or single-stranded DNA substrate, primarily by enhancing product release. Using eluates from FLAG-NEIL1 immunoprecipitates from human cells, we observed 3-fold enhancement in complete repair activity after oxidant treatment. The lack of such enhancement in hnRNP-U-depleted cells suggests its involvement in repairing enhanced base damage after oxidative stress. The NEIL1 disordered C-terminal region binds to hnRNP-U at equimolar ratio with high affinity (K(d) = ∼54 nm). The interacting regions in hnRNP-U, mapped to both termini, suggest their proximity in the native protein; these are also disordered, based on PONDR (Predictor of Naturally Disordered Regions) prediction and circular dichroism spectra. Finally, depletion of hnRNP-U and NEIL1 epistatically sensitized human cells at low oxidative genome damage, suggesting that the hnRNP-U protection of cells after oxidative stress is largely due to enhancement of NEIL1-mediated repair.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Estresse Oxidativo/fisiologia , DNA Glicosilases/genética , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Humanos , Oxirredução , Ligação Proteica
2.
Cell Physiol Biochem ; 31(4-5): 659-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23711492

RESUMO

BACKGROUND: Both endoplasmic reticulum (ER) stress, a fundamental cell response associated with stress-initiated unfolded protein response (UPR), and loss of Klotho, an anti-aging hormone linked to NF-κB-induced inflammation, occur in chronic metabolic diseases such as obesity and type 2 diabetes. We investigated if the loss of Klotho is causally linked to increased ER stress. METHODS: We treated human renal epithelial HK-2, alveolar epithelial A549, HEK293, and SH-SH-SY5Y neuroblastoma cells with ER stress-inducing agents, thapsigargin and/or tunicamycin. Effects of overexpression or siRNA-mediated knockdown of Klotho on UPR signaling was investigated by immunoblotting and Real-time PCR. RESULTS: Elevated Klotho levels in HK-2 cells decreased expression of ER stress markers phospho--IRE1, XBP-1s, BiP, CHOP, pJNK, and phospho-p38, all of which were elevated in response to tunicamycin and/or thapsigargin. Similar results were observed using A549 cells for XBP-1s, BiP, and CHOP in response to thapsigargin. Conversely, knockdown of Klotho in HEK 293 cells using siRNA caused further thapsigargin-induced increases in pIRE-1, XBP-1s, and BiP. Klotho overexpression in A549 cells blocked thapsigargin-induced caspase and PARP cleavage and improved cell viability. CONCLUSION: Our data indicate that Klotho has an important role in regulating ER stress and that loss of Klotho is causally linked to ER stress-induced apoptosis.


Assuntos
Glucuronidase/metabolismo , Apoptose , Caspases/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glucuronidase/antagonistas & inibidores , Glucuronidase/genética , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Klotho , Fosforilação , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Tapsigargina/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas , Regulação para Cima/efeitos dos fármacos
3.
Nat Cancer ; 4(7): 1001-1015, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37336986

RESUMO

The limited efficacy of chimeric antigen receptor (CAR) T cell therapy for solid tumors necessitates engineering strategies that promote functional persistence in an immunosuppressive environment. Herein, we use c-Kit signaling, a physiological pathway associated with stemness in hematopoietic progenitor cells (T cells lose expression of c-Kit during differentiation). CAR T cells with intracellular expression, but no cell-surface receptor expression, of the c-Kit D816V mutation (KITv) have upregulated STAT phosphorylation, antigen activation-dependent proliferation and CD28- and interleukin-2-independent and interferon-γ-mediated co-stimulation, augmenting the cytotoxicity of first-generation CAR T cells. This translates to enhanced survival, including in transforming growth factor-ß-rich and low-antigen-expressing solid tumor models. KITv CAR T cells have equivalent or better in vivo efficacy than second-generation CAR T cells and are susceptible to tyrosine kinase inhibitors (safety switch). When combined with CD28 co-stimulation, KITv co-stimulation functions as a third signal, enhancing efficacy and providing a potent approach to treat solid tumors.


Assuntos
Interleucina-2 , Proteínas Proto-Oncogênicas c-kit , Linfócitos T , Antígenos CD28/genética , Antígenos CD28/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Interleucina-2/farmacologia , Interleucina-2/metabolismo , Receptores Proteína Tirosina Quinases , Proteínas Proto-Oncogênicas c-kit/metabolismo
4.
Front Immunol ; 14: 1112960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875061

RESUMO

Background: The attenuated, genetically engineered vaccinia virus has been shown to be a promising oncolytic virus for the treatment of patients with solid tumors, through both direct cytotoxic and immune-activating effects. Whereas systemically administered oncolytic viruses can be neutralized by pre-existing antibodies, locoregionally administered viruses can infect tumor cells and generate immune responses. We conducted a phase I clinical trial to investigate the safety, feasibility and immune activating effects of intrapleural administration of oncolytic vaccinia virus (NCT01766739). Methods: Eighteen patients with malignant pleural effusion due to either malignant pleural mesothelioma or metastatic disease (non-small cell lung cancer or breast cancer) underwent intrapleural administration of the oncolytic vaccinia virus using a dose-escalating method, following drainage of malignant pleural effusion. The primary objective of this trial was to determine a recommended dose of attenuated vaccinia virus. The secondary objectives were to assess feasibility, safety and tolerability; evaluate viral presence in the tumor and serum as well as viral shedding in pleural fluid, sputum, and urine; and evaluate anti-vaccinia virus immune response. Correlative analyses were performed on body fluids, peripheral blood, and tumor specimens obtained from pre- and post-treatment timepoints. Results: Treatment with attenuated vaccinia virus at the dose of 1.00E+07 plaque-forming units (PFU) to 6.00E+09 PFU was feasible and safe, with no treatment-associated mortalities or dose-limiting toxicities. Vaccinia virus was detectable in tumor cells 2-5 days post-treatment, and treatment was associated with a decrease in tumor cell density and an increase in immune cell density as assessed by a pathologist blinded to the clinical observations. An increase in both effector (CD8+, NK, cytotoxic cells) and suppressor (Tregs) immune cell populations was observed following treatment. Dendritic cell and neutrophil populations were also increased, and immune effector and immune checkpoint proteins (granzyme B, perforin, PD-1, PD-L1, and PD-L2) and cytokines (IFN-γ, TNF-α, TGFß1 and RANTES) were upregulated. Conclusion: The intrapleural administration of oncolytic vaccinia viral therapy is safe and feasible and generates regional immune response without overt systemic symptoms. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT01766739, identifier NCT01766739.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mesotelioma Maligno , Vírus Oncolíticos , Derrame Pleural Maligno , Vacínia , Humanos , Vaccinia virus
5.
Cancer Immunol Res ; 11(10): 1314-1331, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540803

RESUMO

Infiltration of tumor by T cells is a prerequisite for successful immunotherapy of solid tumors. In this study, we investigate the influence of tumor-targeted radiation on chimeric antigen receptor (CAR) T-cell therapy tumor infiltration, accumulation, and efficacy in clinically relevant models of pleural mesothelioma and non-small cell lung cancers. We use a nonablative dose of tumor-targeted radiation prior to systemic administration of mesothelin-targeted CAR T cells to assess infiltration, proliferation, antitumor efficacy, and functional persistence of CAR T cells at primary and distant sites of tumor. A tumor-targeted, nonablative dose of radiation promotes early and high infiltration, proliferation, and functional persistence of CAR T cells. Tumor-targeted radiation promotes tumor-chemokine expression and chemokine-receptor expression in infiltrating T cells and results in a subpopulation of higher-intensity CAR-expressing T cells with high coexpression of chemokine receptors that further infiltrate distant sites of disease, enhancing CAR T-cell antitumor efficacy. Enhanced CAR T-cell efficacy is evident in models of both high-mesothelin-expressing mesothelioma and mixed-mesothelin-expressing lung cancer-two thoracic cancers for which radiotherapy is part of the standard of care. Our results strongly suggest that the use of tumor-targeted radiation prior to systemic administration of CAR T cells may substantially improve CAR T-cell therapy efficacy for solid tumors. Building on our observations, we describe a translational strategy of "sandwich" cell therapy for solid tumors that combines sequential metastatic site-targeted radiation and CAR T cells-a regional solution to overcome barriers to systemic delivery of CAR T cells.


Assuntos
Mesotelioma Maligno , Mesotelioma , Humanos , Mesotelina , Imunoterapia Adotiva/métodos , Proteínas Ligadas por GPI , Receptores de Antígenos de Linfócitos T , Mesotelioma/radioterapia , Mesotelioma Maligno/tratamento farmacológico , Receptores de Quimiocinas , Quimiocinas , Linhagem Celular Tumoral
6.
PLoS Biol ; 6(7): e163, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18613748

RESUMO

In recent years, remarkable versatility of polyketide synthases (PKSs) has been recognized; both in terms of their structural and functional organization as well as their ability to produce compounds other than typical secondary metabolites. Multifunctional Type I PKSs catalyze the biosynthesis of polyketide products by either using the same active sites repetitively (iterative) or by using these catalytic domains only once (modular) during the entire biosynthetic process. The largest open reading frame in Mycobacterium tuberculosis, pks12, was recently proposed to be involved in the biosynthesis of mannosyl-beta-1-phosphomycoketide (MPM). The PKS12 protein contains two complete sets of modules and has been suggested to synthesize mycoketide by five alternating condensations of methylmalonyl and malonyl units by using an iterative mode of catalysis. The bimodular iterative catalysis would require transfer of intermediate chains from acyl carrier protein domain of module 2 to ketosynthase domain of module 1. Such bimodular iterations during PKS biosynthesis have not been characterized and appear unlikely based on recent understanding of the three-dimensional organization of these proteins. Moreover, all known examples of iterative PKSs so far characterized involve unimodular iterations. Based on cell-free reconstitution of PKS12 enzymatic machinery, in this study, we provide the first evidence for a novel "modularly iterative" mechanism of biosynthesis. By combination of biochemical, computational, mutagenic, analytical ultracentrifugation and atomic force microscopy studies, we propose that PKS12 protein is organized as a large supramolecular assembly mediated through specific interactions between the C- and N-terminus linkers. PKS12 protein thus forms a modular assembly to perform repetitive condensations analogous to iterative proteins. This novel intermolecular iterative biosynthetic mechanism provides new perspective to our understanding of polyketide biosynthetic machinery and also suggests new ways to engineer polyketide metabolites. The characterization of novel molecular mechanisms involved in biosynthesis of mycobacterial virulent lipids has opened new avenues for drug discovery.


Assuntos
Proteínas de Bactérias/química , Ácido Graxo Sintases/química , Glicolipídeos/biossíntese , Fosfolipídeos/biossíntese , Policetídeo Sintases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Sistema Livre de Células , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Glicolipídeos/química , Espectrometria de Massas , Microscopia de Força Atômica , Mutagênese , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Fosfolipídeos/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Especificidade por Substrato , Ultracentrifugação
7.
Mol Ther Oncolytics ; 22: 355-367, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34553024

RESUMO

Success in solid tumor chimeric antigen receptor (CAR) T-cell therapy requires overcoming several barriers, including lung sequestration, inefficient accumulation within the tumor, and target-antigen heterogeneity. Understanding CAR T-cell kinetics can assist in the interpretation of therapy response and limitations and thereby facilitate developing successful strategies to treat solid tumors. As T-cell therapy response varies across metastatic sites, the assessment of CAR T-cell kinetics by peripheral blood analysis or a single-site tumor biopsy is inadequate for interpretation of therapy response. The use of tumor imaging alone has also proven to be insufficient to interpret response to therapy. To address these limitations, we conducted dual tumor and T-cell imaging by use of a bioluminescent reporter and positron emission tomography in clinically relevant mouse models of pleural mesothelioma and non-small cell lung cancer. We observed that the mode of delivery of T cells (systemic versus regional), T-cell activation status (presence or absence of antigen-expressing tumor), and tumor-antigen expression heterogeneity influence T-cell kinetics. The observations from our study underscore the need to identify and develop a T-cell reporter-in addition to standard parameters of tumor imaging and antitumor efficacy-that can be used for repeat imaging without compromising the efficacy of CAR T cells in vivo.

8.
Protein J ; 26(7): 445-55, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17514412

RESUMO

The identity of intermolecular contact residues in sickle hemoglobin (HbS) fiber is largely known. However, our knowledge about combinatorial effects of two or more contact sites or the mechanistic basis of such effects is rather limited. Lys16, His20, and Glu23 of the alpha-chain occur in intra-double strand axial contacts in the sickle hemoglobin (HbS) fiber. Here we have constructed two novel double mutants, HbS (K16Q/E23Q) and (H20Q/E23Q), with a view to delineate cumulative impact of interactions emanating from the above contact sites. Far-UV and visible region CD spectra of the double mutants were similar to the native HbS indicating the presence of native-like secondary and tertiary structure in the mutants. The quaternary structures in both the mutants were also preserved as judged by the derivative UV spectra of liganded (oxy) and unliganded (deoxy) forms of the double mutants. However, the double mutants displayed interesting polymerization behavior. The polymerization behaviour of the double mutants was found to be non-additive of the individual single mutants. While HbS (H20Q/E23Q) showed inhibitory effect similar to that of HbS (E23Q), the intrinsic inhibitory propensity of the associated single mutants was totally quelled in HbS (K16Q/E23Q) double mutant. Molecular dynamics (MD) simulations studies of the isolated alpha-chains as well as a module of the fiber containing the double and associated single mutants suggested that these contact sites at the axial interface of the fiber impact HbS polymerization through a coupled interaction network. The overall results demonstrate a subtle role of dynamics and electrostatics in the polymer formation and provide insights about interaction-linkage in HbS fiber assembly.


Assuntos
Hemoglobina Falciforme/química , Sítios de Ligação , Dicroísmo Circular , Dimerização , Hemoglobina Falciforme/genética , Hemoglobina Falciforme/metabolismo , Humanos , Mutação , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Termodinâmica
9.
Exp Diabetes Res ; 2011: 192564, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21869881

RESUMO

The impact of increased NF-κB-inducing kinase (NIK), a key component of the NF-κB activation pathways, on diabetes-induced renal inflammation remains unknown. We overexpressed NIK wild type (NIKwt) or kinase-dead dominant negative mutants (NIKdn) in HK-2 cells and demonstrated that RelB and p52, but not RelA, abundance and DNA binding increased in nuclei of NIKwt but not NIKdn overexpressed cells, and this corresponded with increases in multiple proinflammatory cytokines. Since TRAF3 negatively regulates NIK expression, we silenced TRAF3 by >50%; this increased nuclear levels of p52 and RelB, and transcript levels of proinflammatory cytokines and transcription factors. In HK-2 cells and mouse primary proximal tubule epithelial cells treated with methylglyoxal-modified albumin, multiple proinflammatory cytokines and NIK were increased in association with increased nuclear RelB and p52. These observations indicate that NIK regulates proinflammatory responses of renal proximal tubular epithelial cells via mechanisms involving TRAF3 and suggest a role for NF-κB noncanonical pathway activation in modulating diabetes-induced inflammation in renal tubular epithelium.


Assuntos
Nefropatias Diabéticas/genética , Túbulos Renais/patologia , Nefrite/genética , Proteínas Serina-Treonina Quinases/fisiologia , Urotélio/patologia , Animais , Células Cultivadas , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Túbulos Renais/metabolismo , Camundongos , Nefrite/etiologia , Nefrite/metabolismo , Nefrite/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Aldeído Pirúvico/química , Aldeído Pirúvico/farmacologia , RNA Interferente Pequeno/farmacologia , Albumina Sérica/química , Albumina Sérica/farmacologia , Transfecção , Urotélio/metabolismo , Quinase Induzida por NF-kappaB
10.
Endocrinology ; 152(10): 3622-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21846802

RESUMO

Enhanced levels of nuclear factor (NF)-κB-inducing kinase (NIK), an upstream kinase in the NF-κB pathway, have been implicated in the pathogenesis of chronic inflammation in diabetes. We investigated whether increased levels of NIK could induce skeletal muscle insulin resistance. Six obese subjects with metabolic syndrome underwent skeletal muscle biopsies before and six months after gastric bypass surgery to quantitate NIK protein levels. L6 skeletal myotubes, transfected with NIK wild-type or NIK kinase-dead dominant negative plasmids, were treated with insulin alone or with adiponectin and insulin. Effects of NIK overexpression on insulin-stimulated glucose uptake were estimated using tritiated 2-deoxyglucose uptake. NF-κB activation (EMSA), phosphatidylinositol 3 (PI3) kinase activity, and phosphorylation of inhibitor κB kinase ß and serine-threonine kinase (Akt) were measured. After weight loss, skeletal muscle NIK protein was significantly reduced in association with increased plasma adiponectin and enhanced AMP kinase phosphorylation and insulin sensitivity in obese subjects. Enhanced NIK expression in cultured L6 myotubes induced a dose-dependent decrease in insulin-stimulated glucose uptake. The decrease in insulin-stimulated glucose uptake was associated with a significant decrease in PI3 kinase activity and protein kinase B/Akt phosphorylation. Overexpression of NIK kinase-dead dominant negative did not affect insulin-stimulated glucose uptake. Adiponectin treatment inhibited NIK-induced NF-κB activation and restored insulin sensitivity by restoring PI3 kinase activation and subsequent Akt phosphorylation. These results indicate that NIK induces insulin resistance and further indicate that adiponectin exerts its insulin-sensitizing effect by suppressing NIK-induced skeletal muscle inflammation. These observations suggest that NIK could be an important therapeutic target for the treatment of insulin resistance associated with inflammation in obesity and type 2 diabetes.


Assuntos
Adiponectina/farmacologia , Resistência à Insulina , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Adulto , Células Cultivadas , Glucose/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Serina-Treonina Quinases/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinase Induzida por NF-kappaB
11.
Diabetes ; 60(7): 1907-16, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21593200

RESUMO

OBJECTIVE: Klotho is an antiaging hormone present in the kidney that extends the lifespan, regulates kidney function, and modulates cellular responses to oxidative stress. We investigated whether Klotho levels and signaling modulate inflammation in diabetic kidneys. RESEARCH DESIGN AND METHODS: Renal Klotho expression was determined by quantitative real-time PCR and immunoblot analysis. Primary mouse tubular epithelial cells were treated with methylglyoxalated albumin, and Klotho expression and inflammatory cytokines were measured. Nuclear factor (NF)-κB activation was assessed by treating human embryonic kidney (HEK) 293 and HK-2 cells with tumor necrosis factor (TNF)-α in the presence or absence of Klotho, followed by immunoblot analysis to evaluate inhibitor of κB (IκB)α degradation, IκB kinase (IKK) and p38 activation, RelA nuclear translocation, and phosphorylation. A chromatin immunoprecipitation assay was performed to analyze the effects of Klotho signaling on interleukin-8 and monocyte chemoattractant protein-1 promoter recruitment of RelA and RelA serine (Ser)(536). RESULTS: Renal Klotho mRNA and protein were significantly decreased in db/db mice, and a similar decline was observed in the primary cultures of mouse tubule epithelial cells treated with methylglyoxal-modified albumin. The exogenous addition of soluble Klotho or overexpression of membranous Klotho in tissue culture suppressed NF-κB activation and subsequent production of inflammatory cytokines in response to TNF-α stimulation. Klotho specifically inhibited RelA Ser(536) phosphorylation as well as promoter DNA binding of this phosphorylated form of RelA without affecting IKK-mediated IκBα degradation, total RelA nuclear translocation, and total RelA DNA binding. CONCLUSIONS: These findings suggest that Klotho serves as an anti-inflammatory modulator, negatively regulating the production of NF-κB-linked inflammatory proteins via a mechanism that involves phosphorylation of Ser(536) in the transactivation domain of RelA.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/patologia , Glucuronidase/fisiologia , Inflamação/patologia , Rim/patologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Citocinas/biossíntese , Glucuronidase/genética , Células HEK293 , Humanos , Túbulos Renais/metabolismo , Proteínas Klotho , Masculino , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa