Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(45): 18277-82, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21969589

RESUMO

We introduce a human retinal pigmented epithelial (RPE) cell-culture model that mimics several key aspects of early stage age-related macular degeneration (AMD). These include accumulation of sub-RPE deposits that contain molecular constituents of human drusen, and activation of complement leading to formation of deposit-associated terminal complement complexes. Abundant sub-RPE deposits that are rich in apolipoprotein E (APOE), a prominent drusen constituent, are formed by RPE cells grown on porous supports. Exposure to human serum results in selective, deposit-associated accumulation of additional known drusen components, including vitronectin, clusterin, and serum amyloid P, thus suggesting that specific protein-protein interactions contribute to the accretion of plasma proteins during drusen formation. Serum exposure also leads to complement activation, as evidenced by the generation of C5b-9 immunoreactive terminal complement complexes in association with APOE-containing deposits. Ultrastructural analyses reveal two morphologically distinct forms of deposits: One consisting of membrane-bounded multivesicular material, and the other of nonmembrane-bounded particle conglomerates. Collectively, these results suggest that drusen formation involves the accumulation of sub-RPE material rich in APOE, a prominent biosynthetic product of the RPE, which interacts with a select group of drusen-associated plasma proteins. Activation of the complement cascade appears to be mediated via the classical pathway by the binding of C1q to ligands in APOE-rich deposits, triggering direct activation of complement by C1q, deposition of terminal complement complexes and inflammatory sequelae. This model system will facilitate the analysis of molecular and cellular aspects of AMD pathogenesis, and the testing of new therapeutic agents for its treatment.


Assuntos
Ativação do Complemento , Degeneração Macular/patologia , Modelos Biológicos , Drusas Retinianas/patologia , Apolipoproteínas E/metabolismo , Técnicas de Cultura de Células , Humanos , Imuno-Histoquímica , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
2.
Exp Eye Res ; 116: 96-108, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23954241

RESUMO

We have used a novel human retinal pigmented epithelial (RPE) cell-based model that mimics drusen biogenesis and the pathobiology of age-related macular degeneration to evaluate the efficacy of newly designed peptide inhibitors of the complement system. The peptides belong to the compstatin family and, compared to existing compstatin analogs, have been optimized to promote binding to their target, complement protein C3, and to enhance solubility by improving their polarity/hydrophobicity ratios. Based on analysis of molecular dynamics simulation data of peptide-C3 complexes, novel binding features were designed by introducing intermolecular salt bridge-forming arginines at the N-terminus and at position -1 of N-terminal dipeptide extensions. Our study demonstrates that the RPE cell assay has discriminatory capability for measuring the efficacy and potency of inhibitory peptides in a macular disease environment.


Assuntos
Peptídeos Cíclicos/farmacologia , Drusas Retinianas/imunologia , Epitélio Pigmentado da Retina/metabolismo , Células Cultivadas , Ativação do Complemento , Humanos , Drusas Retinianas/tratamento farmacológico , Drusas Retinianas/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/embriologia
3.
Mol Vis ; 16: 2511-23, 2010 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-21139996

RESUMO

PURPOSE: To examine the expression patterns of the intermediate filament (IF) proteins nestin and synemin following retinal injury. METHODS: Wide-scale retinal injuries were created by experimental retinal detachment of 1, 3, 7, or 30 days' duration. Injuries were induced in the right eyes of Long Evans rats, while the left eyes served as internal controls. Vibratome sections of control and injured retinas were labeled with fluorescent probes using a combination of anti-glial fibrillary acidic protein, -vimentin, -nestin, -synemin, -bromodeoxyuridine, and the lectin probe, isolectin B4. Additionally, antibody specificity, as well as protein and mRNA levels of nestin and synemin were determined and quantified using standard western blotting and real time polymerase chain reaction (RT-PCR) techniques. RESULTS: Immunocytochemistry showed increased Müller cell labeling at 1, 3, and 7 days post injury for all four IFs, although the relative levels of nestin expression varied dramatically between individual Müller cells. Nestin was consistently observed in the foremost processes of those Müller cells that grew into the subretinal space, forming glial scars. Elevated levels of nestin expression were also observed in bromodeoxyuridine-labeled Müller cells following retinal insult. Quantitative polymerase chain reaction (qPCR) showed a twofold increase in nestin mRNA 1 day after injury, a level maintained at 3 and 7 days. Western blotting using anti-nestin showed a single band at 220 kDa and the intensity of this band increased following injury. Anti-synemin labeling of control retinas revealed faint labeling of astrocytes; this increased after injury, demonstrating an association with blood vessels. Additionally, there was an upregulation of synemin in Müller cells. qPCR and western blotting with anti-synemin showed a continuous increase in both gene and protein expression over time. CONCLUSIONS: Retinal injury induces an upregulation of a complement of four intermediate filament proteins, including synemin and nestin, in Müller cells. The latter provides suggestive support for the concept that these cells may revert to a more developmentally immature state, since these two IF proteins are developmentally regulated and expressed, and thus may serve as cell cycle reentry markers. Nestin and its differential expression patterns with glial fibrillary acidic protein and vimentin networks, as well as its association with proliferating Müller cells and those extending into the subretinal space, suggest a significant role of this protein in glial scar formation and perhaps gliogenesis. Synemin immunopositive astrocytes demonstrate a close relationship to the retinal vasculature, and illustrate a remarkable ability to reorganize their morphology in response to injury. Further examination of the changes in the cytoskeletal signatures of both of these glial cell types may lead to a more comprehensive understanding of mechanisms underway following retinal and other central nervous system injuries.


Assuntos
Astrócitos/metabolismo , Perfilação da Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Retina/lesões , Vimentina/metabolismo , Animais , Astrócitos/patologia , Western Blotting , Regulação da Expressão Gênica , Proteínas de Filamentos Intermediários/genética , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Nestina , Ratos , Ratos Long-Evans , Retina/metabolismo , Retina/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa