Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Chemistry ; 29(49): e202301357, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272206

RESUMO

This study presents the synthesis, the spectroscopic and electrochemical properties of new bis- and tetra-substituted azaboron-dipyrromethene (aza-BODIPY) dyes substituted by different electron donating groups connected to the aza-BODIPY core through a thiophene unit. In line with theoretical calculations, experimental measurements point out the positive impact of the thiophene group that behave as a secondary donor group leading to an enhancement of the intramolecular charge transfer process in comparison to previously reported aza-BODIPY dyes. This heterocycle has also been found to tune the oxidative potential and to stabilize the electro-generated species.

2.
Biomacromolecules ; 23(6): 2485-2495, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35608946

RESUMO

The (Z) and (E)-isomers of an extended tetraphenylethylene-based chromophore with optimized two-photon-induced luminescence properties are separated and functionalized with water-solubilizing pendant polymer groups, promoting their self-assembly in physiological media in the form of small, colloidal stable organic nanoparticles. The two resulting fluorescent suspensions are then evaluated as potential two-photon luminescent contrast agents for intravital epifluorescence and two-photon fluorescence microscopy. Comparisons with previously reported works involving similar fluorophores devoid of polymer side chains illustrate the benefits of later functionalization regarding the control of the self-assembly of the nano-objects and ultimately their biocompatibility toward the imaged organism.


Assuntos
Substâncias Luminescentes , Nanopartículas , Corantes Fluorescentes/química , Luminescência , Microscopia , Nanopartículas/química , Polímeros
3.
Small ; 17(42): e2102486, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523224

RESUMO

Two-photon lithography is a potential route to produce high-resolution 3D ceramics. However, the large shrinkage due to the elimination of an important organic counterpart of the printed material during debinding/sintering remains a lock to further development of this technology. To limit this phenomenon, an original approach based on a composite resin incorporating 45 wt% ultrasmall (5 nm) zirconia stabilized nanoparticles into the zirconium acrylate precursor is proposed to process 3D zirconia microlattices and nanostructured optical surfaces. Interestingly, the nanoparticles are used both as seeds allowing control of the crystallographic phase formed during the calcination process and as structural stabilizing agent preventing important shrinkage of the printed ceramic. After 3D photolithography and pyrolysis, the weight and volume loss of the microstructures are drastically reduced as compared to similar systems processed with the reference resin without nanoparticles, and stable 3D microstructures of cubic zirconia are obtained with high spatial resolution. In the case of a patterned surface, the refractive index of 2.1 leads to a diffraction efficiency large enough to obtain microfocusing with linewidths of 0.1 µm, and the demonstration of a microlens array with a period as small as 0.8 µm.


Assuntos
Nanopartículas , Nanoestruturas , Cerâmica , Cristalização , Teste de Materiais , Impressão Tridimensional , Pirólise , Propriedades de Superfície , Zircônio
4.
Acc Chem Res ; 53(8): 1511-1519, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786340

RESUMO

Guanine (G) radicals are precursors to DNA oxidative damage, correlated with carcinogenesis and aging. During the past few years, we demonstrated clearly an intriguing effect: G radicals can be generated upon direct absorption of UV radiation with energy significantly lower than the G ionization potential. Using nanosecond transient absorption spectroscopy, we studied the primary species, ejected electrons and guanine radicals, which result from photoionization of various DNA systems in aqueous solution.The DNA propensity to undergo electron detachment at low photon energies greatly depends on its secondary structure. Undetected for monomers or unstacked oligomers, this propensity may be 1 order of magnitude higher for G-quadruplexes than for duplexes. The experimental results suggest nonvertical processes, associated with the relaxation of electronic excited states. Theoretical studies are required to validate the mechanism and determine the factors that come into play. Such a mechanism, which may be operative over a broad excitation wavelength range, explains the occurrence of oxidative damage observed upon UVB and UVA irradiation.Quantification of G radical populations and their time evolution questions some widespread views. It appears that G radicals may be generated with the same probability as pyrimidine dimers, which are considered to be the major lesions induced upon absorption of low-energy UV radiation by DNA. As most radical cations undergo deprotonation, the vast majority of the final reaction products is expected to stem from long-lived deprotonated radicals. Consequently, when G radical cations are involved, the widely used oxidation marker 8-oxodG is not representative of the oxidative damage.Beyond the biological consequences, photogeneration of electron holes in G-quadruplexes may inspire applications in nanoelectronics; although four-stranded structures are currently studied as molecular wires, their behavior as photoconductors has not been explored so far.In the present Account, after highlighting some key experimental issues, we first describe the photoionization process, and then, we focus on radicals. We use as show-cases new results obtained for genomic DNA and Oxytricha G-quadruplexes. Generation and reaction dynamics of G radicals in these systems provide a representative picture of the phenomena reported previously for duplexes and G-quadruplexes, respectively.


Assuntos
DNA/química , Radicais Livres/química , Guanina/química , Dano ao DNA/efeitos da radiação , Elétrons , Quadruplex G/efeitos da radiação , Íons/química , Teoria Quântica , Raios Ultravioleta
5.
Molecules ; 25(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365780

RESUMO

The study deals with the primary species, ejected electrons, and guanine radicals, leading to oxidative damage, that is generated in four-stranded DNA structures (guanine quadruplexes) following photo-ionization by low-energy UV radiation. Performed by nanosecond transient absorption spectroscopy with 266 nm excitation, it focusses on quadruplexes formed by folding of GGG(TTAGGG)3 single strands in the presence of K+ ions, TEL21/K+. The quantum yield for one-photon ionization (9.4 × 10-3) was found to be twice as high as that reported previously for TEL21/Na+. The overall population of guanine radicals decayed faster, their half times being, respectively, 1.4 and 6.7 ms. Deprotonation of radical cations extended over four orders of magnitude of time; the faster step, concerning 40% of their population, was completed within 500 ns. A reaction intermediate, issued from radicals, whose absorption spectrum peaked around 390 nm, was detected.


Assuntos
Radicais Livres/química , Quadruplex G , Guanina/química , Fótons , Potássio/química , Telômero/química , Raios Ultravioleta , Cátions/química , Guanina/biossíntese , Análise Espectral , Telômero/genética , Raios Ultravioleta/efeitos adversos
6.
Chemistry ; 25(38): 9026-9034, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972809

RESUMO

Two trispicolinate 1,4,7-triazacyclonane (TACN)-based ligands bearing three picolinate biphotonic antennae were synthetized and their Yb3+ and Gd3+ complexes isolated. One series differs from the other by the absence (L1 )/presence (L2 ) of bromine atoms on the antenna backbone, offering respectively improved optical and singlet-oxygen generation properties. Photophysical properties of the ligands, complexes and micellar Pluronic suspensions were investigated. Complexes exhibit high two-photon absorption cross-section combined either with NIR emission (Yb) or excellent 1 O2 generation (Gd). The very large intersystem crossing efficiency induced by the combination of bromine atom and heavy rare-earth element was corroborated with theoretical calculations. The 1 O2 generation properties of L2 Gd micellar suspension under two-photon activation leads to tumour cell death, suggesting the potential of such structures for theranostic applications.

7.
Molecules ; 24(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247883

RESUMO

Guanine radicals, known to be involved in the damage of the genetic code and aging, are studied by nanosecond transient absorption spectroscopy. They are generated in single, double and four-stranded structures (G-quadruplexes) by one and two-photon ionization at 266 nm, corresponding to a photon energy lower than the ionization potential of nucleobases. The quantum yield of the one-photon process determined for telomeric G-quadruplexes (TEL25/Na+) is (5.2 ± 0.3) × 10-3, significantly higher than that found for duplexes containing in their structure GGG and GG sequences, (2.1 ± 0.4) × 10-3. The radical population is quantified in respect of the ejected electrons. Deprotonation of radical cations gives rise to (G-H1)• and (G-H2)• radicals for duplexes and G-quadruplexes, respectively. The lifetimes of deprotonated radicals determined for a given secondary structure strongly depend on the base sequence. The multiscale non-exponential dynamics of these radicals are discussed in terms of inhomogeneity of the reaction space and continuous conformational motions. The deviation from classical kinetic models developed for homogeneous reaction conditions could also be one reason for discrepancies between the results obtained by photoionization and indirect oxidation, involving a bi-molecular reaction between an oxidant and the nucleic acid.


Assuntos
DNA/química , Radicais Livres/química , Guanina/química , Sequência de Bases , Dano ao DNA , Quadruplex G , Estrutura Molecular , Conformação de Ácido Nucleico , Ácidos Nucleicos/química , Oxirredução , Análise Espectral
8.
Chemistry ; 24(57): 15185-15189, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30035824

RESUMO

Guanine quadruplexes (G4) are four-stranded DNA structures involved in biological processes and are promising candidates for potential nanotechnological applications. This study examines how the G4 topology affects the electronic absorption and the delocalization of electron holes, which play a key role in charge transport and oxidative damage. Combining transient absorption spectroscopy with PCM/TD-DFT calculations both parallel (P) and antiparallel (A) G4 are investigated, which are formed, respectively, by association of four TGGGGT strands and folding of the human telomeric sequence GGG(TTAGGG)3 . The experimental absorption spectra obtained upon photo-ionization of A and P are different. This is explained by the different topology of the two G4, as well as by hole delocalization between two stacked guanines, possible only in P+ . The spectral signature of delocalized hole in guanine-rich regions is provided and the chemical physical effects which rule the hole delocalization are discussed.


Assuntos
DNA/química , Quadruplex G , Sequência de Bases , Elétrons , Modelos Moleculares , Teoria Quântica
9.
Faraday Discuss ; 207(0): 181-197, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29372211

RESUMO

There is increasing evidence that the direct absorption of photons with energies that are lower than the ionization potential of nucleobases may result in oxidative damage to DNA. The present work, which combines nanosecond transient absorption spectroscopy and quantum mechanical calculations, studies this process in alternating adenine-thymine duplexes (AT)n. We show that the one-photon ionization quantum yield of (AT)10 at 266 nm (4.66 eV) is (1.5 ± 0.3) × 10-3. According to our PCM/TD-DFT calculations carried out on model duplexes composed of two base pairs, (AT)1 and (TA)1, simultaneous base pairing and stacking does not induce important changes in the absorption spectra of the adenine radical cation and deprotonated radical. The adenine radicals, thus identified in the time-resolved spectra, disappear with a lifetime of 2.5 ms, giving rise to a reaction product that absorbs at 350 nm. In parallel, the fingerprint of reaction intermediates other than radicals, formed directly from singlet excited states and assigned to AT/TA dimers, is detected at shorter wavelengths. PCM/TD-DFT calculations are carried out to map the pathways leading to such species and to characterize their absorption spectra; we find that, in addition to the path leading to the well-known TA* photoproduct, an AT photo-dimerization path may be operative in duplexes.


Assuntos
Adenina/química , Adenina/efeitos da radiação , Timina/química , Timina/efeitos da radiação , Raios Ultravioleta , Radicais Livres/química , Radicais Livres/efeitos da radiação , Teoria Quântica
10.
Phys Chem Chem Phys ; 20(33): 21381-21389, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30101268

RESUMO

Recent studies have evidenced that oxidatively damaged DNA, which potentially leads to carcinogenic mutations and aging, may result from the direct absorption of low-energy photons (>250 nm). Herein, the primary species, i.e., ejected electrons and base radicals associated with such damage in duplexes with an alternating guanine-cytosine sequence are quantified by nanosecond transient absorption spectroscopy. The one-photon ionization quantum yield at 266 nm is 1.2 × 10-3, which is similar to those reported previously for adenine-thymine duplexes. This means that the simple presence of guanine, the nucleobase with the lowest ionization potential, does not affect photo-ionization. The transient species detected after 3 µs are identified as deprotonated guanine radicals, which decay with a half-time of 2.5 ms. Spectral assignment is made with the help of quantum chemistry calculations (TD-DFT), which for the first time, provide reference absorption spectra for guanine radicals in duplexes. In addition, our computed spectra predict the changes in transient absorption expected for hole localization as well as deprotonation (to cytosine and bulk water) and hydration of the radical cation.


Assuntos
Citosina/efeitos da radiação , Radicais Livres/síntese química , Guanina/efeitos da radiação , Oligodesoxirribonucleotídeos/efeitos da radiação , Citosina/química , Dano ao DNA , Elétrons , Guanina/química , Meia-Vida , Modelos Químicos , Oligodesoxirribonucleotídeos/química , Fótons , Teoria Quântica , Raios Ultravioleta , Água/química
11.
J Am Chem Soc ; 139(30): 10561-10568, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28737902

RESUMO

Telomeres, which are involved in cell division, carcinogenesis, and aging and constitute important therapeutic targets, are prone to oxidative damage. This propensity has been correlated with the presence of guanine-rich sequences, capable of forming four-stranded DNA structures (G-quadruplexes). Here, we present the first study on oxidative damage of human telomere G-quadruplexes without mediation of external molecules. Our investigation has been performed for G-quadruplexes formed by folding of GGG(TTAGGG)3 single strands in buffered solutions containing Na+ cations (TEL21/Na+). Associating nanosecond time-resolved spectroscopy and quantum mechanical calculations (TD-DFT), it focuses on the primary species, ejected electrons and guanine radicals, generated upon absorption of UV radiation directly by TEL21/Na+. We show that, at 266 nm, corresponding to an energy significantly lower than the guanine ionization potential, the one-photon ionization quantum yield is 4.5 × 10-3. This value is comparable to that of cyclobutane thymine dimers (the major UV-induced lesions) in genomic DNA; the quantum yield of these dimers in TEL21/Na+ is found to be (1.1 ± 0.1) × 10-3. The fate of guanine radicals, generated in equivalent concentration with that of ejected electrons, is followed over 5 orders of magnitude of time. Such a quantitative approach reveals that an important part of radical cation population survives up to a few milliseconds, whereas radical cations produced by chemical oxidants in various DNA systems are known to deprotonate, at most, within a few microseconds. Under the same experimental conditions, neither one-photon ionization nor long-lived radical cations are detected for the telomere repeat TTAGGG in single-stranded configuration, showing that secondary structure plays a key role in these processes. Finally, two types of deprotonated radicals are identified: on the one hand, (G-H2)• radicals, stable at early times, and on the other hand, (G-H1)• radicals, appearing within a few milliseconds and decaying with a time constant of ∼50 ms.


Assuntos
Quadruplex G , Guanina/química , Telômero/química , Raios Ultravioleta , Absorção de Radiação , Cátions , Radicais Livres/química , Humanos , Estrutura Molecular
12.
J Am Chem Soc ; 136(31): 10838-41, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25050452

RESUMO

DNA methylation, occurring at the 5 position of cytosine, is a natural process associated with mutational hotspots in skin tumors. By combining experimental techniques (optical spectroscopy, HPLC coupled to mass spectrometry) with theoretical methods (molecular dynamics, DFT/TD-DFT calculations in solution), we study trinucleotides with key sequences (TCG/T5mCG) in the UV-induced DNA damage. We show how the extra methyl, affecting the conformational equilibria and, hence, the electronic excited states, increases the quantum yield for the formation of cyclobutane dimers while reducing that of (6-4) adducts.


Assuntos
Citosina/química , Metilação de DNA , DNA/química , Simulação de Dinâmica Molecular , Teoria Quântica , Repetições de Trinucleotídeos , Raios Ultravioleta , Citosina/metabolismo , DNA/genética , Dano ao DNA , Conformação Molecular
13.
Chem Sci ; 15(25): 9694-9702, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38939128

RESUMO

Lanthanide(iii) (Ln3+) complexes have desirable photophysical properties for optical bioimaging. However, despite their advantages over organic dyes, their use for microscopy imaging is limited by the high-energy UV excitation they require and their poor ability to cross the cell membrane and reach the cytosol. Here we describe a novel family of lanthanide-based luminescent probes, termed dTAT[Ln·L], based on (i) a DOTA-like chelator with a picolinate moiety, (ii) a two-photon absorbing antenna to shift the excitation to the near infrared and (ii) a dimeric TAT cell-penetrating peptide for cytosolic delivery. Several Tb3+ and Eu3+ probes were prepared and characterized. Two-photon microscopy of live cells was attempted using a commercial microscope with the three probes showing the highest quantum yields (>0.15). A diffuse Ln3+ emission was detected in most cells, which is characteristic of cytosolic delivery of the Ln3+ complex. The cytotoxicity of these three probes was evaluated and the IC50 ranged from 7 µM to >50 µM. The addition of a single positive or negative charge to the antenna of the most cytotoxic compound was sufficient to lower significantly or suppress its toxicity under the conditions used for two-photon microscopy. Therefore, the design reported here provides excellent lanthanide-based probes for two-photon microscopy of living cells.

14.
Chemistry ; 19(11): 3762-74, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23335234

RESUMO

The singlet excited states of adenine oligomers, model systems widely used for the understanding of the interaction of ultraviolet radiation with DNA, are investigated by fluorescence spectroscopy and time-dependent (TD) DFT calculations. Fluorescence decays, fluorescence anisotropy decays, and time-resolved fluorescence spectra are recorded from the femtosecond to the nanosecond timescales for single strand (dA)20 in aqueous solution. These experimental observations and, in particular, the comparison of the fluorescence behavior upon UVC and UVA excitation allow the identification of various types of electronic transitions with different energy and polarization. Calculations performed for up to five stacked 9-methyladenines, taking into account the solvent, show that different excited states are responsible for the absorption in the UVC and UVA spectral domains. Independently of the number of bases, bright excitons may evolve toward two types of excited dimers having π-π* or charge-transfer character, each one distinguished by its own geometry and spectroscopic signature. According to the picture arising from the joint experimental and theoretical investigation, UVC-induced fluorescence contains contribution from 1) exciton states with a different degree of localization, decaying within a few ps, 2) "neutral" excited dimers decaying on the sub-nanosecond timescale, being the dominant species, and 3) charge-transfer states decaying on the nanosecond timescale. The majority of the photons emitted upon UVA excitation are related to charge-transfer states.


Assuntos
Adenina/química , Teoria Quântica , Modelos Moleculares , Soluções , Espectrofotometria Ultravioleta , Fatores de Tempo , Raios Ultravioleta , Água/química
15.
Sci Rep ; 13(1): 3165, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823297

RESUMO

It is well known that infrared microscopy of micrometer sized samples suffers from strong scattering distortions, attributed to Mie scattering. The state-of-the-art preprocessing technique for modelling and removing Mie scattering features from infrared absorbance spectra of biological samples is built on a meta model for perfect spheres. However, non-spherical cell shapes are the norm rather than the exception, and it is therefore highly relevant to evaluate the validity of this preprocessing technique for deformed spherical systems. Addressing these cases, we investigate both numerically and experimentally the absorbance spectra of 3D-printed individual domes, rows of up to five domes, two domes with varying distance, and semi-capsules of varying lengths as model systems of deformed individual cells and small cell clusters. We find that coupling effects between individual domes are small, corroborating previous related literature results for spheres. Further, we point out and illustrate with examples that, while optical reciprocity guarantees the same extinction efficiency for top vs. bottom illumination, a scatterer's internal field may be vastly different in these two situations. Finally, we demonstrate that the ME-EMSC model for preprocessing infrared spectra from spherical biological systems is valid also for deformed spherical systems.


Assuntos
Algoritmos , Modelos Biológicos , Espalhamento de Radiação , Luz , Microscopia
16.
J Am Chem Soc ; 134(36): 14834-45, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22894169

RESUMO

The study addresses interconnected issues related to two major types of cycloadditions between adjacent thymines in DNA leading to cyclobutane dimers (T<>Ts) and (6-4) adducts. Experimental results are obtained for the single strand (dT)(20) by steady-state and time-resolved optical spectroscopy, as well as by HPLC coupled to mass spectrometry. Calculations are carried out for the dinucleoside monophosphate in water using the TD-M052X method and including the polarizable continuum model; the reliability of TD-M052X is checked against CASPT2 calculations regarding the behavior of two stacked thymines in the gas phase. It is shown that irradiation at the main absorption band leads to cyclobutane dimers (T<>Ts) and (6-4) adducts via different electronic excited states. T<>Ts are formed via (1)ππ* excitons; [2 + 2] dimerization proceeds along a barrierless path, in line with the constant quantum yield (0.05) with the irradiation wavelength, the contribution of the (3)ππ* state to this reaction being less than 10%. The formation of oxetane, the reaction intermediate leading to (6-4) adducts, occurs via charge transfer excited states involving two stacked thymines, whose fingerprint is detected in the fluorescence spectra; it involves an energy barrier explaining the important decrease in the quantum yield of (6-4) adducts with the irradiation wavelength.


Assuntos
Ciclobutanos/química , Elétrons , Teoria Quântica , Timina/química , Ciclização , DNA/química , Dimerização , Conformação de Ácido Nucleico , Espectrofotometria Ultravioleta , Raios Ultravioleta
17.
Photochem Photobiol ; 98(3): 523-531, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34653259

RESUMO

This review is dedicated to guanine radical cations (G+ )· that are precursors to oxidatively generated damage to DNA. (G+ )· are unstable in neutral aqueous solution and tend to lose a proton. The deprotonation process has been studied by time-resolved absorption experiments in which (G+ )· radicals are produced either by an electron abstraction reaction, using an external oxidant, or by low-energy/low-intensity photoionization of DNA. Both the position of the released proton and the dynamics of the process depend on the secondary DNA structure. While deprotonation in duplex DNA leads to (G-H1)· radicals, in guanine quadruplexes the (G-H2)· analogs are observed. Deprotonation in monomeric guanosine proceeds with a time constant of ~60 ns; in genomic DNA, it is completed within 2 µs; and in guanine quadruplexes, it spans from at least 30 ns to over 50 µs. Such a deprotonation dynamics in four-stranded structures, extended over more than three decades of times, is correlated with the anisotropic structure of DNA and the mobility of its hydration shell. In this case, commonly used second-order reaction models are inappropriate for its description.


Assuntos
Guanina , Prótons , Cátions/química , DNA/química , Radicais Livres/química , Guanina/química
18.
J Am Chem Soc ; 133(14): 5163-5, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21417388

RESUMO

The photochemical properties of the DNA duplex (dA)(20)·(dT)(20) are compared with those of the parent single strands. It is shown that base pairing increases the probability of absorbing UVA photons, probably due to the formation of charge-transfer states. UVA excitation induces fluorescence peaking at ∼420 nm and decaying on the nanosecond time scale. The fluorescence quantum yield, the fluorescence lifetime, and the quantum yield for cyclobutane dimer formation increase upon base pairing. Such behavior contrasts with that of the UVC-induced processes.


Assuntos
Pareamento de Bases/efeitos da radiação , Ciclobutanos/química , DNA/química , Dimerização , Raios Ultravioleta , Absorção , Dímeros de Pirimidina/química , Espectrometria de Fluorescência
19.
Nanoscale ; 13(6): 3767-3781, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33555278

RESUMO

Neuroinflammation is a process common to several brain pathologies. Despites its medical relevance, it still remains poorly understood; there is therefore a need to develop new in vivo preclinical imaging strategies to monitor inflammatory processes longitudinally. We here present the development of a hybrid imaging nanoprobe named NP3, that was specifically designed to get internalized by phagocytic cells and imaged in vivo with MRI and bi-photon microscopy. NP3 is composed of a 16 nm core of gadolinium fluoride (GdF3), coated with bisphosphonate polyethylene glycol (PEG) and functionalized with a Lemke-type fluorophore. It has a hydrodynamic diameter of 28 ± 8 nm and a zeta potential of -42 ± 6 mV. The MR relaxivity ratio at 7 T is r1/r2 = 20; therefore, NP3 is well suited as a T2/T2* contrast agent. In vitro cytotoxicity assessments performed on four human cell lines revealed no toxic effects of NP3. In addition, NP3 is internalized by macrophages in vitro without inducing inflammation or cytotoxicity. In vivo, uptake of NP3 has been observed in the spleen and the liver. NP3 has a prolonged vascular remanence, which is an advantage for macrophage uptake in vivo. The proof-of-concept that NP3 may be used as a contrast agent targeting phagocytic cells is provided in an animal model of ischemic stroke in transgenic CX3CR1-GFP/+ mice using three complementary imaging modalities: MRI, intravital two-photon microscopy and phase contrast imaging with synchrotron X-rays. In summary, NP3 is a promising preclinical tool for the multiscale and multimodal investigation of neuroinflammation.


Assuntos
Meios de Contraste , Gadolínio , Animais , Imageamento por Ressonância Magnética , Imagem Multimodal , Polietilenoglicóis
20.
Org Biomol Chem ; 8(7): 1706-11, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20237685

RESUMO

The carcinogenic action of UVA radiation is commonly attributed to DNA oxidation mediated by endogenous photosensitisers. Yet, it was recently shown that cyclobutane pyrimidine dimers (CPD), well known for their involvement in UVB genotoxicity, are produced in larger yield than oxidative lesions in UVA-irradiated cells and skin. In the present work, we gathered mechanistic information on this photoreaction by comparing formation of all possible bipyrimidine photoproducts upon UVA irradiation of cells, purified genomic DNA and dA(20):dT(20) oligonucleotide duplex. We observed that the distribution of photoproducts, characterized by the sole formation of CPD and the absence of (6-4) photoproducts was similar in the three types of samples. The CPD involving two thymines represented 90% of the amount of photoproducts. Moreover, the yields of formation of the DNA lesions were similar in cells and isolated DNA. In addition, the effect of the wavelength of the incident photons was found to be the same in isolated DNA and cells. This set of data shows that UVA-induced cyclobutane pyrimidine dimers are formed via a direct photochemical mechanism, without mediation of a cellular photosensitiser. This is possible because the double-stranded structure increases the capacity of DNA bases to absorb UVA photons, as evidenced in the case of the oligomer dA(20):dT(20). These results emphasize the need to consider UVA in the carcinogenic effects of sunlight. An efficient photoprotection is needed that can only be complete by completely blocking incident photons, rather than by systemic approaches such as antioxidant supplementation.


Assuntos
Dano ao DNA/efeitos da radiação , DNA/química , Dímeros de Pirimidina/química , Raios Ultravioleta/efeitos adversos , Animais , Bovinos , Células Cultivadas , Clostridium perfringens/genética , DNA/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano/efeitos da radiação , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Micrococcus luteus/genética , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa