Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1355369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711968

RESUMO

Introduction: Bacillus velezensis occurs extensively in the soil environment. It produces a range of antimicrobial compounds that play an important role in the field of biological control. However, during the actual application process it is often affected by factors such as the medium formulation and fermentation conditions, and therefore biocontrol measures often do not achieve their expected outcomes. Methods: In this study, the B. velezensis BHZ-29 strain was used as the research object. The carbon and nitrogen sources, and inorganic salts that affect the number of viable bacteria and antibacterial potency of B. velezensis BHZ-29, were screened by a single factor test. A Plackett-Burman design experiment was conducted to determine the significant factors affecting the number of viable bacteria and antibacterial potency, and a Box-Behnken design experiment was used to obtain the optimal growth of B. velezensis BHZ-29. The medium formula that produced the highest number of viable bacteria and most antibacterial substances was determined. The initial pH, temperature, amount of inoculant, liquid volume, shaking speed, and culture time were determined by a single factor test. The factors that had a significant influence on the number of viable bacteria of B. velezensis BHZ-29 were selected by an orthogonal test. A Box-Behnken design experiment was conducted to obtain the optimal fermentation conditions, and highest number of viable bacteria and antibacterial titer. Results: Molasses, peptone, and magnesium sulfate had significant effects on the viable count and antibacterial titer of B. velezensis BHZ-29. The viable count of B. velezensis BHZ-29 increased from 7.83 × 109 to 2.17 × 1010 CFU/mL, and the antibacterial titer increased from 111.67 to 153.13 mm/mL when the optimal media were used. The optimal fermentation conditions for B. velezensis BHZ-29 were as follows: temperature 25.57°C, pH 7.23, culture time 95.90 h, rotation speed 160 rpm, amount of inoculant 2%, and liquid volume 100 ml. After the optimization of fermentation conditions, the number of viable bacteria increased to 3.39 × 1010 CFU/mL, and the bacteriostatic titer increased to 158.85 mm/ml.The plant height and leaf number of cotton plants treated with BHZ-29 fermentation broth were higher than those of cotton inoculated with Verticillium dahliae. The number of bacteria was 1.15 × 107 CFU/g, and the number of fungi was 1.60 × 105 spores/g. The disease index of the cotton seedlings treated with the optimized fermentation broth was 2.2, and a control effect of 93.8% was achieved. B. velezensis BHZ-29 could reduce the disease index of cotton Verticillium wilt and had a controlling effect on the disease. The best effect was achieved in the treatment group with an inoculation concentration of 2 × 108 CFU/ml, the disease index was 14.50, and a control effect of 84.18% was achieved. Discussion: The fermentation process parameters of the number of viable bacteria and antibacterial titer by strain B. velezensis BHZ-29 were optimized to lay a foundation for the practical production and application of strain B. velezensis BHZ-29 in agriculture.

2.
Antiviral Res ; 225: 105868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490343

RESUMO

Porcine Reproductive and Respiratory Syndrome (PRRS) presents a formidable viral challenge in swine husbandry. Confronting the constraints of existing veterinary pharmaceuticals and vaccines, this investigation centers on Caffeic Acid Phenethyl Ester (CAPE) as a prospective clinical suppressant for the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). The study adopts an integrated methodology to evaluate CAPE's antiviral attributes. This encompasses a dual-phase analysis of CAPE's interaction with PRRSV, both in vitro and in vivo, and an examination of its influence on viral replication. Varied dosages of CAPE were subjected to empirical testing in animal models to quantify its efficacy in combating PRRSV infections. The findings reveal a pronounced antiviral potency, notably in prophylactic scenarios. As a predominant component of propolis, CAPE stands out as a promising candidate for clinical suppression, showing exceptional effectiveness in pre-exposure prophylaxis regimes. This highlights the potential of CAPE in spearheading cutting-edge strategies for the management of future PRRSV outbreaks.


Assuntos
Ácidos Cafeicos , Álcool Feniletílico/análogos & derivados , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Drogas Veterinárias , Suínos , Animais , Estudos Prospectivos , Drogas Veterinárias/farmacologia , Replicação Viral , Antivirais/farmacologia
3.
Nat Commun ; 15(1): 4813, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844461

RESUMO

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) poses a major threat to the global swine industry, yet effective prevention and control measures remain elusive. This study unveils Nitazoxanide (NTZ) as a potent inhibitor of PRRSV both in vitro and in vivo. Through High-Throughput Screening techniques, 16 potential anti-PRRSV compounds are identified from a library comprising FDA-approved and pharmacopeial drugs. We show that NTZ displays strong efficacy in reducing PRRSV proliferation and transmission in a swine model, alleviating viremia and lung damage. Additionally, Tizoxanide (TIZ), the primary metabolite of NTZ, has been identified as a facilitator of NMRAL1 dimerization. This finding potentially sheds light on the underlying mechanism contributing to TIZ's role in augmenting the sensitivity of the IFN-ß pathway. These results indicate the promising potential of NTZ as a repurposed therapeutic agent for Porcine Reproductive and Respiratory Syndrome (PRRS). Additionally, they provide valuable insights into the antiviral mechanisms underlying NTZ's effectiveness.


Assuntos
Antivirais , Ensaios de Triagem em Larga Escala , Nitrocompostos , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Tiazóis , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Nitrocompostos/farmacologia , Suínos , Antivirais/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Síndrome Respiratória e Reprodutiva Suína/virologia , Tiazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Viremia/tratamento farmacológico , Viremia/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa