Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 611(7934): 68-73, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289343

RESUMO

Objects that deform a liquid interface are subject to capillary forces, which can be harnessed to assemble the objects1-4. Once assembled, such structures are generally static. Here we dynamically modulate these forces to move objects in programmable two-dimensional patterns. We 3D-print devices containing channels that trap floating objects using repulsive capillary forces5,6, then move these devices vertically in a water bath. Because the channel cross-sections vary with height, the trapped objects can be steered in two dimensions. The device and interface therefore constitute a simple machine that converts vertical to lateral motion. We design machines that translate, rotate and separate multiple floating objects and that do work on submerged objects through cyclic vertical motion. We combine these elementary machines to make centimetre-scale compound machines that braid micrometre-scale filaments into prescribed topologies, including non-repeating braids. Capillary machines are distinct from mechanical, optical or fluidic micromanipulators in that a meniscus links the object to the machine. Therefore, the channel shapes need only be controlled on the scale of the capillary length (a few millimetres), even when the objects are microscopic. Consequently, such machines can be built quickly and inexpensively. This approach could be used to manipulate micrometre-scale particles or to braid microwires for high-frequency electronics.

2.
Proc Natl Acad Sci U S A ; 117(48): 30234-30240, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33214150

RESUMO

Characterizing the entropy of a system is a crucial, and often computationally costly, step in understanding its thermodynamics. It plays a key role in the study of phase transitions, pattern formation, protein folding, and more. Current methods for entropy estimation suffer from a high computational cost, lack of generality, or inaccuracy and inability to treat complex, strongly interacting systems. In this paper, we present a method, termed machine-learning iterative calculation of entropy (MICE), for calculating the entropy by iteratively dividing the system into smaller subsystems and estimating the mutual information between each pair of halves. The estimation is performed with a recently proposed machine-learning algorithm which works with arbitrary network architectures that can be chosen to fit the structure and symmetries of the system at hand. We show that our method can calculate the entropy of various systems, both thermal and athermal, with state-of-the-art accuracy. Specifically, we study various classical spin systems and identify the jamming point of a bidisperse mixture of soft disks. Finally, we suggest that besides its role in estimating the entropy, the mutual information itself can provide an insightful diagnostic tool in the study of physical systems.

3.
Proc Natl Acad Sci U S A ; 117(19): 10195-10202, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350137

RESUMO

Problems of flexible mechanical metamaterials, and highly deformable porous solids in general, are rich and complex due to their nonlinear mechanics and the presence of nontrivial geometrical effects. While numeric approaches are successful, analytic tools and conceptual frameworks are largely lacking. Using an analogy with electrostatics, and building on recent developments in a nonlinear geometric formulation of elasticity, we develop a formalism that maps the two-dimensional (2D) elastic problem into that of nonlinear interaction of elastic charges. This approach offers an intuitive conceptual framework, qualitatively explaining the linear response, the onset of mechanical instability, and aspects of the postinstability state. Apart from intuition, the formalism also quantitatively reproduces full numeric simulations of several prototypical 2D structures. Possible applications of the tools developed in this work for the study of ordered and disordered 2D porous elastic metamaterials are discussed.

4.
Proc Natl Acad Sci U S A ; 116(31): 15344-15349, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311866

RESUMO

The numerical solution of partial differential equations (PDEs) is challenging because of the need to resolve spatiotemporal features over wide length- and timescales. Often, it is computationally intractable to resolve the finest features in the solution. The only recourse is to use approximate coarse-grained representations, which aim to accurately represent long-wavelength dynamics while properly accounting for unresolved small-scale physics. Deriving such coarse-grained equations is notoriously difficult and often ad hoc. Here we introduce data-driven discretization, a method for learning optimized approximations to PDEs based on actual solutions to the known underlying equations. Our approach uses neural networks to estimate spatial derivatives, which are optimized end to end to best satisfy the equations on a low-resolution grid. The resulting numerical methods are remarkably accurate, allowing us to integrate in time a collection of nonlinear equations in 1 spatial dimension at resolutions 4× to 8× coarser than is possible with standard finite-difference methods.

5.
Proc Natl Acad Sci U S A ; 114(28): 7289-7294, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28655846

RESUMO

Identifying heterogeneous structures in glasses-such as localized soft spots-and understanding structure-dynamics relations in these systems remain major scientific challenges. Here, we derive an exact expression for the local thermal energy of interacting particles (the mean local potential energy change caused by thermal fluctuations) in glassy systems by a systematic low-temperature expansion. We show that the local thermal energy can attain anomalously large values, inversely related to the degree of softness of localized structures in a glass, determined by a coupling between internal stresses-an intrinsic signature of glassy frustration-anharmonicity and low-frequency vibrational modes. These anomalously large values follow a fat-tailed distribution, with a universal exponent related to the recently observed universal [Formula: see text] density of states of quasilocalized low-frequency vibrational modes. When the spatial thermal energy field-a "softness field"-is considered, this power law tail manifests itself by highly localized spots, which are significantly softer than their surroundings. These soft spots are shown to be susceptible to plastic rearrangements under external driving forces, having predictive powers that surpass those of the normal modes-based approach. These results offer a general, system/model-independent, physical/observable-based approach to identify structural properties of quiescent glasses and relate them to glassy dynamics.

6.
PLoS Comput Biol ; 12(4): e1004819, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27074136

RESUMO

Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types.


Assuntos
Modelos Biológicos , Folhas de Planta/crescimento & desenvolvimento , Feixe Vascular de Plantas/crescimento & desenvolvimento , Anisotropia , Arabidopsis/crescimento & desenvolvimento , Fenômenos Biomecânicos , Padronização Corporal , Biologia Computacional , Simulação por Computador , Estresse Mecânico
7.
Soft Matter ; 13(5): 995-1005, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28083571

RESUMO

Inhomogeneous polymers, such as partially cofilin-bound actin filaments, play an important role in various natural and biotechnological systems. At finite temperatures, inhomogeneous polymers exhibit non-trivial thermal fluctuations. More broadly, these are relatively simple examples of fluctuations in spatially inhomogeneous systems, which are less understood compared to their homogeneous counterparts. Here we develop a statistical theory of torsional, extensional and bending Gaussian fluctuations of inhomogeneous polymers (chains), where the inhomogeneity is an inclusion of variable size and stiffness, using both continuum and discrete approaches. First, we analytically calculate the complete eigenvalue and eigenmode spectra within a continuum field theory. In particular, we show that the wavenumber inside and outside of the inclusion is nearly linear in the eigenvalue index, with a nontrivial coefficient. Second, we solve the corresponding discrete problem and highlight fundamental differences between the continuum and discrete spectra. In particular, we demonstrate that above a certain wavenumber the discrete spectrum changes qualitatively and discrete evanescent eigenmodes, which do not have continuum counterparts, emerge. The implications of these differences are explored by calculating fluctuation-induced forces associated with free-energy variations with either the inclusion properties (e.g. inhomogeneity formed by adsorbing molecules) or with an external geometric constraint. The former, which is the fluctuation-induced contribution to the adsorbing molecule binding force, is shown to be affected by short wavelengths and thus cannot be calculated using the continuum approach. The latter, on the other hand, is shown to be dominated by long wavelength shape fluctuations and hence is properly described by the continuum theory.

8.
Phys Rev E ; 109(3-1): 034129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632757

RESUMO

The statistics of the diffusive motion of particles often serve as an experimental proxy for their interaction with the environment. However, inferring the physical properties from the observed trajectories is challenging. Inspired by a recent experiment, here we analyze the problem of particles undergoing two-dimensional Brownian motion with transient tethering to the surface. We model the problem as a hidden Markov model where the physical position is observed and the tethering state is hidden. We develop an alternating maximization algorithm to infer the hidden state of the particle and estimate the physical parameters of the system. The crux of our method is a saddle-point-like approximation, which involves finding the most likely sequence of hidden states and estimating the physical parameters from it. Extensive numerical tests demonstrate that our algorithm reliably finds the model parameters and is insensitive to the initial guess. We discuss the different regimes of physical parameters and the algorithm's performance in these regimes. We also provide a free software implementation of our algorithm.

9.
Sci Rep ; 13(1): 12350, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524736

RESUMO

Forecasting the timing of earthquakes is a long-standing challenge. Moreover, it is still debated how to formulate this problem in a useful manner, or to compare the predictive power of different models. Here, we develop a versatile neural encoder of earthquake catalogs, and apply it to the fundamental problem of earthquake rate prediction, in the spatio-temporal point process framework. The epidemic type aftershock sequence model (ETAS) effectively learns a small number of parameters to constrain the assumed functional forms for the space and time correlations of earthquake sequences (e.g., Omori-Utsu law). Here we introduce learned spatial and temporal embeddings for point process earthquake forecasting models that capture complex correlation structures. We demonstrate the generality of this neural representation as compared with ETAS model using train-test data splits and how it enables the incorporation additional geophysical information. In rate prediction tasks, the generalized model shows [Formula: see text] improvement in information gain per earthquake and the simultaneous learning of anisotropic spatial structures analogous to fault traces. The trained network can be also used to perform short-term prediction tasks, showing similar improvement while providing a 1000-fold reduction in run-time.

10.
ACS Sens ; 8(10): 3781-3792, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37791886

RESUMO

MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression and are emerging as powerful indicators of diseases. MiRs are secreted in blood plasma and thus may report on systemic aberrations at an early stage via liquid biopsy analysis. We present a method for multiplexed single-molecule detection and quantification of a selected panel of miRs. The proposed assay does not depend on sequencing, requires less than 1 mL of blood, and provides fast results by direct analysis of native, unamplified miRs. This is enabled by a novel combination of compact spectral imaging and a machine learning-based detection scheme that allows simultaneous multiplexed classification of multiple miR targets per sample. The proposed end-to-end pipeline is extremely time efficient and cost-effective. We benchmark our method with synthetic mixtures of three target miRs, showcasing the ability to quantify and distinguish subtle ratio changes between miR targets.


Assuntos
MicroRNA Circulante , MicroRNAs , MicroRNA Circulante/genética , MicroRNAs/genética
11.
Phys Rev E ; 106(3): L033001, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266884

RESUMO

Classically, the quantity of contact area A_{R} between two bodies is considered a proxy for the force of friction. However, bond density across the interface-quality of contact-is also relevant, and contemporary debate often centers around the relative importance of these two factors. In this work, we demonstrate that a third factor, often overlooked, plays a significant role in static frictional strength: The spatial distribution of contact. We perform static friction measurements, µ, on three pairs of solid blocks while imaging the contact plane. By using linear regression on hundreds of image-µ pairs, we are able to predict future friction measurements with three to seven times better accuracy than existing benchmarks, including total quantity of contact area. Our model has no access to quality of contact, and we therefore conclude that a large portion of the interfacial state is encoded in the spatial distribution of contact, rather than its quality or quantity.

12.
Sci Adv ; 5(4): eaau6792, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31032399

RESUMO

Machine learning has gained widespread attention as a powerful tool to identify structure in complex, high-dimensional data. However, these techniques are ostensibly inapplicable for experimental systems where data are scarce or expensive to obtain. Here, we introduce a strategy to resolve this impasse by augmenting the experimental dataset with synthetically generated data of a much simpler sister system. Specifically, we study spontaneously emerging local order in crease networks of crumpled thin sheets, a paradigmatic example of spatial complexity, and show that machine learning techniques can be effective even in a data-limited regime. This is achieved by augmenting the scarce experimental dataset with inexhaustible amounts of simulated data of rigid flat-folded sheets, which are simple to simulate and share common statistical properties. This considerably improves the predictive power in a test problem of pattern completion and demonstrates the usefulness of machine learning in bench-top experiments where data are good but scarce.

13.
Artigo em Inglês | MEDLINE | ID: mdl-26172642

RESUMO

The equipartition theorem states that in equilibrium, thermal energy is equally distributed among uncoupled degrees of freedom that appear quadratically in the system's Hamiltonian. However, for spatially coupled degrees of freedom, such as interacting particles, one may speculate that the spatial distribution of thermal energy may differ from the value predicted by equipartition, possibly quite substantially in strongly inhomogeneous or disordered systems. Here we show that for systems undergoing simple Gaussian fluctuations around an equilibrium state, the spatial distribution is universally bounded from above by 1/2k(B)T. We further show that in one-dimensional systems with short-range interactions, the thermal energy is equally partitioned even for coupled degrees of freedom in the thermodynamic limit and that in higher dimensions nontrivial spatial distributions emerge. Some implications are discussed.


Assuntos
Modelos Teóricos , Termodinâmica
14.
Sci Rep ; 5: 7841, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25598161

RESUMO

Frictional interfaces abound in natural and man-made systems, yet their dynamics are not well-understood. Recent extensive experimental data have revealed that velocity-strengthening friction, where the steady-state frictional resistance increases with sliding velocity over some range, is a generic feature of such interfaces. This physical behavior has very recently been linked to slow stick-slip motion. Here we elucidate the importance of velocity-strengthening friction by theoretically studying three variants of a realistic friction model, all featuring identical logarithmic velocity-weakening friction at small sliding velocities, but differ in their higher velocity behaviors. By quantifying energy partition (e.g. radiation and dissipation), the selection of interfacial rupture fronts and rupture arrest, we show that the presence or absence of strengthening significantly affects the global interfacial resistance and the energy release during frictional instabilities. Furthermore, we show that different forms of strengthening may result in events of similar magnitude, yet with dramatically different dissipation and radiation rates. This happens because the events are mediated by rupture fronts with vastly different propagation velocities, where stronger velocity-strengthening friction promotes slower rupture. These theoretical results may have significant implications on our understanding of frictional dynamics.

15.
Artigo em Inglês | MEDLINE | ID: mdl-24483372

RESUMO

The strength and stability of frictional interfaces, ranging from tribological systems to earthquake faults, are intimately related to the underlying spatially extended dynamics. Here we provide a comprehensive theoretical account, both analytic and numeric, of spatiotemporal interfacial dynamics in a realistic rate-and-state friction model, featuring both velocity-weakening and velocity-strengthening behaviors. Slowly extending, loading-rate-dependent creep patches undergo a linear instability at a critical nucleation size, which is nearly independent of interfacial history, initial stress conditions, and velocity-strengthening friction. Nonlinear propagating rupture fronts-the outcome of instability-depend sensitively on the stress state and velocity-strengthening friction. Rupture fronts span a wide range of propagation velocities and are related to steady-state-front solutions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa