Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Comput Biol ; 20(1): e1011775, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38266041

RESUMO

Disease propagation between countries strongly depends on their effective distance, a measure derived from the world air transportation network (WAN). It reduces the complex spreading patterns of a pandemic to a wave-like propagation from the outbreak country, establishing a linear relationship to the arrival time of the unmitigated spread of a disease. However, in the early stages of an outbreak, what concerns decision-makers in countries is understanding the relative risk of active cases arriving in their country-essentially, the likelihood that an active case boarding an airplane at the outbreak location will reach them. While there are data-fitted models available to estimate these risks, accurate mechanistic, parameter-free models are still lacking. Therefore, we introduce the 'import risk' model in this study, which defines import probabilities using the effective-distance framework. The model assumes that airline passengers are distributed along the shortest path tree that starts at the outbreak's origin. In combination with a random walk, we account for all possible paths, thus inferring predominant connecting flights. Our model outperforms other mobility models, such as the radiation and gravity model with varying distance types, and it improves further if additional geographic information is included. The import risk model's precision increases for countries with stronger connections within the WAN, and it reveals a geographic distance dependence that implies a pull- rather than a push-dynamic in the distribution process.


Assuntos
Aeronaves , Surtos de Doenças , Pandemias
2.
Eur J Immunol ; 53(3): e2250090, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36404054

RESUMO

Dysregulation of the myeloid cell compartment is a feature of severe disease in hospitalized COVID-19 patients. Here, we investigated the response of circulating dendritic cell (DC) and monocyte subpopulations in SARS-CoV-2 infected outpatients with mild disease and compared it to the response of healthy individuals to yellow fever vaccine virus YF17D as a model of a well-coordinated response to viral infection. In SARS-CoV-2-infected outpatients circulating DCs were persistently reduced for several weeks whereas after YF17D vaccination DC numbers were decreased temporarily and rapidly replenished by increased proliferation until 14 days after vaccination. The majority of COVID-19 outpatients showed high expression of CD86 and PD-L1 in monocytes and DCs early on, resembling the dynamic after YF17D vaccination. In a subgroup of patients, low CD86 and high PD-L1 expression were detected in monocytes and DCs coinciding with symptoms, higher age, and lower lymphocyte counts. This phenotype was similar to that observed in severely ill COVID-19 patients, but less pronounced. Thus, prolonged reduction and dysregulated activation of blood DCs and monocytes were seen in a subgroup of symptomatic non-hospitalized COVID-19 patients while a transient coordinated activation was characteristic for the majority of patients with mild COVID-19 and the response to YF17D vaccination.


Assuntos
COVID-19 , Febre Amarela , Humanos , Monócitos , Antígeno B7-H1/metabolismo , SARS-CoV-2 , Vírus da Febre Amarela , Vacinação , Células Dendríticas
3.
iScience ; 27(6): 110138, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38974469

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron breakthrough infection (BTI) induced better protection than triple vaccination. To address the underlying immunological mechanisms, we studied antibody and T cell response dynamics during vaccination and after BTI. Each vaccination significantly increased peak neutralization titers with simultaneous increases in circulating spike-specific T cell frequencies. Neutralization titers significantly associated with a reduced hazard rate for SARS-CoV-2 infection. Yet, 97% of triple vaccinees became SARS-CoV-2 infected. BTI further boosted neutralization magnitude and breadth, broadened virus-specific T cell responses to non-vaccine-encoded antigens, and protected with an efficiency of 88% from further infections by December 2022. This effect was then assessed by utilizing mathematical modeling, which accounted for time-dependent infection risk, the antibody, and T cell concentration at any time point after BTI. Our findings suggest that cross-variant protective hybrid immunity induced by vaccination and BTI was an important contributor to the reduced virus transmission observed in Bavaria in late 2022 and thereafter.

4.
Nat Commun ; 14(1): 2952, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225706

RESUMO

Despite intensive research since the emergence of SARS-CoV-2, it has remained unclear precisely which components of the early immune response protect against the development of severe COVID-19. Here, we perform a comprehensive immunogenetic and virologic analysis of nasopharyngeal and peripheral blood samples obtained during the acute phase of infection with SARS-CoV-2. We find that soluble and transcriptional markers of systemic inflammation peak during the first week after symptom onset and correlate directly with upper airways viral loads (UA-VLs), whereas the contemporaneous frequencies of circulating viral nucleocapsid (NC)-specific CD4+ and CD8+ T cells correlate inversely with various inflammatory markers and UA-VLs. In addition, we show that high frequencies of activated CD4+ and CD8+ T cells are present in acutely infected nasopharyngeal tissue, many of which express genes encoding various effector molecules, such as cytotoxic proteins and IFN-γ. The presence of IFNG mRNA-expressing CD4+ and CD8+ T cells in the infected epithelium is further linked with common patterns of gene expression among virus-susceptible target cells and better local control of SARS-CoV-2. Collectively, these results identify an immune correlate of protection against SARS-CoV-2, which could inform the development of more effective vaccines to combat the acute and chronic illnesses attributable to COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Linfócitos T CD8-Positivos , Soroconversão , Nucleocapsídeo
5.
Cancer Cell ; 41(7): 1327-1344.e10, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352862

RESUMO

Gastric neuroendocrine carcinomas (G-NEC) are aggressive malignancies with poorly understood biology and a lack of disease models. Here, we use genome sequencing to characterize the genomic landscapes of human G-NEC and its histologic variants. We identify global and subtype-specific alterations and expose hitherto unappreciated gains of MYC family members in a large part of cases. Genetic engineering and lineage tracing in mice delineate a model of G-NEC evolution, which defines MYC as a critical driver and positions the cancer cell of origin to the neuroendocrine compartment. MYC-driven tumors have pronounced metastatic competence and display defined signaling addictions, as revealed by large-scale genetic and pharmacologic screening of cell lines and organoid resources. We create global maps of G-NEC dependencies, highlight critical vulnerabilities, and validate therapeutic targets, including candidates for clinical drug repurposing. Our study gives comprehensive insights into G-NEC biology.


Assuntos
Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Modelos Moleculares , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética
6.
Front Immunol ; 13: 1026473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582222

RESUMO

SARS-CoV-2 vaccine breakthrough infections frequently occurred even before the emergence of Omicron variants. Yet, relatively little is known about the impact of vaccination on SARS-CoV-2-specific T cell and antibody response dynamics upon breakthrough infection. We have therefore studied the dynamics of CD4 and CD8 T cells targeting the vaccine-encoded Spike and the non-encoded Nucleocapsid antigens during breakthrough infections (BTI, n=24) and in unvaccinated control infections (non-BTI, n=30). Subjects with vaccine breakthrough infection had significantly higher CD4 and CD8 T cell responses targeting the vaccine-encoded Spike during the first and third/fourth week after PCR diagnosis compared to non-vaccinated controls, respectively. In contrast, CD4 T cells targeting the non-vaccine encoded Nucleocapsid antigen were of significantly lower magnitude in BTI as compared to non-BTI. Hence, previous vaccination was linked to enhanced T cell responses targeting the vaccine-encoded Spike antigen, while responses against the non-vaccine encoded Nucleocapsid antigen were significantly attenuated.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Nucleocapsídeo
7.
Nat Cancer ; 3(3): 318-336, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122074

RESUMO

KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) is highly immunosuppressive and resistant to targeted and immunotherapies. Among the different PDAC subtypes, basal-like mesenchymal PDAC, which is driven by allelic imbalance, increased gene dosage and subsequent high expression levels of oncogenic KRAS, shows the most aggressive phenotype and strongest therapy resistance. In the present study, we performed a systematic high-throughput combination drug screen and identified a synergistic interaction between the MEK inhibitor trametinib and the multi-kinase inhibitor nintedanib, which targets KRAS-directed oncogenic signaling in mesenchymal PDAC. This combination treatment induces cell-cycle arrest and cell death, and initiates a context-dependent remodeling of the immunosuppressive cancer cell secretome. Using a combination of single-cell RNA-sequencing, CRISPR screens and immunophenotyping, we show that this combination therapy promotes intratumor infiltration of cytotoxic and effector T cells, which sensitizes mesenchymal PDAC to PD-L1 immune checkpoint inhibition. Overall, our results open new avenues to target this aggressive and therapy-refractory mesenchymal PDAC subtype.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral
8.
Front Immunol ; 13: 1075606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741409

RESUMO

Immunogens and vaccination regimens can influence patterns of immune-epitope recognition, steering them towards or away from epitopes of potential viral vulnerability. HIV-1 envelope (Env)-specific antibodies targeting variable region 2 (V2) or 3 (V3) correlated with protection during the RV144 trial, however, it was suggested that the immunodominant V3 region might divert antibody responses away from other relevant sites. We mapped IgG responses against linear Env epitopes in five clinical HIV vaccine trials, revealing a specific pattern of Env targeting for each regimen. Notable V2 responses were only induced in trials administering CRF01_AE based immunogens, but targeting of V3 was seen in all trials, with the soluble, trimeric CN54gp140 protein eliciting robust V3 recognition. Strong V3 targeting was linked to greater overall response, increased number of total recognised antigenic regions, and where present, stronger V2 recognition. Hence, strong induction of V3-specific antibodies did not negatively impact the targeting of other linear epitopes in this study, suggesting that the induction of antibodies against V3 and other regions of potential viral vulnerability need not be necessarily mutually exclusive.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/prevenção & controle , Anticorpos Anti-HIV , Vacinação , Epitopos , Imunoglobulina G
9.
Nat Commun ; 10(1): 1415, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926791

RESUMO

B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.


Assuntos
Elementos de DNA Transponíveis/genética , Testes Genéticos/métodos , Linfoma de Células B/genética , Animais , Sistemas CRISPR-Cas/genética , Células Clonais , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Genes Supressores de Tumor , Estudos de Associação Genética , Humanos , Perda de Heterozigosidade , Linfoma de Células B/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa