Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(37): e2203230119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067290

RESUMO

Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, Helicoverpa zea (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates H. zea population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones. Seasonal populations were initially detected in the southern range, where they experienced multiple large population peaks. All three zones experienced a final peak between late July (southern range) and mid-August to mid-September (transitional zone and northern limits). The southern range expanded by 3% since 1981 and is projected to increase by twofold by 2099 but the areas of other zones are expected to decrease in the future. These changes suggest larger populations may persist at higher latitudes in the future due to reduced low-temperature lethal events during winter. Because H. zea is a highly migratory pest, predicting when populations accumulate in one region can inform synchronous or lagged population development in other regions. We show the value of combining long-term datasets, remotely sensed data, and laboratory findings to inform forecasting of insect pests.


Assuntos
Mudança Climática , Mariposas , Estações do Ano , Animais , Dinâmica Populacional , Temperatura
2.
Life Sci Alliance ; 3(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32732254

RESUMO

In plants, growth-defense trade-offs occur because of limited resources, which demand prioritization towards either of them depending on various external and internal factors. However, very little is known about molecular mechanisms underlying their occurrence. Here, we describe that cyclophilin 20-3 (CYP20-3), a 12-oxo-phytodienoic acid (OPDA)-binding protein, crisscrosses stress responses with light-dependent electron reactions, which fine-tunes activities of key enzymes in plastid sulfur assimilations and photosynthesis. Under stressed states, OPDA, accumulates in the chloroplasts, binds and stimulates CYP20-3 to convey electrons towards serine acetyltransferase 1 (SAT1) and 2-Cys peroxiredoxin A (2CPA). The latter is a thiol-based peroxidase, protecting and optimizing photosynthesis by reducing its toxic byproducts (e.g., H2O2). Reduction of 2CPA then inactivates its peroxidase activity, suppressing the peroxide detoxification machinery, whereas the activation of SAT1 promotes thiol synthesis and builds up reduction capacity, which in turn triggers the retrograde regulation of defense gene expressions against abiotic stress. Thus, we conclude that CYP20-3 is a unique metabolic hub conveying resource allocations between plant growth and defense responses (trade-offs), ultimately balancing optimal growth phonotype.


Assuntos
Proteínas de Arabidopsis/metabolismo , Ciclofilinas/metabolismo , Ácidos Graxos Insaturados/metabolismo , Resposta ao Choque Térmico/fisiologia , Arabidopsis , Proteínas de Arabidopsis/fisiologia , Cloroplastos/metabolismo , Ciclofilinas/genética , Ciclofilinas/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Peróxidos/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Fotossíntese , Plastídeos/metabolismo , Serina O-Acetiltransferase/metabolismo
3.
Biomolecules ; 9(1)2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634678

RESUMO

Cyclophilins (CYPs) belong to a peptidyl-prolyl cis-trans isomerase family, and were first characterized in mammals as a target of an immunosuppressive drug, cyclosporin A, preventing proinflammatory cytokine production. In Arabidopsis, 29 CYPs and CYP-like proteins are found across all subcellular compartments, involved in various physiological processes including transcriptional regulation, organogenesis, photosynthetic and hormone signaling pathways, stress adaptation and defense responses. These important but diverse activities of CYPs must be reflected by their versatility as cellular and molecular modulators. However, our current knowledge regarding their mode of actions is still far from complete. This review will briefly revisit recent progresses on the roles and mechanisms of CYPs in Arabidopsis studies, and information gaps within, which help understanding the phenotypic and environmental plasticity of plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclofilinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ciclofilinas/genética , Redes e Vias Metabólicas , Doenças das Plantas/prevenção & controle , Estresse Fisiológico
4.
Plant Signal Behav ; 12(9): e1362520, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28805482

RESUMO

The jasmonate family of phytohormones plays central roles in plant development and stress acclimation. However, the regulatory modes of their signaling circuitry remain largely unknown. Here we describe that cyclophilin 20-3 (CYP20-3), a binding protein of (+)-12-oxo-phytodienoic acid (OPDA), crisscrosses stress responses with light-dependent redox reactions, which fine-tunes the activity of key enzymes in the plastid photosynthetic carbon assimilation and sulfur assimilation pathways. Under stressed states, OPDA - accumulated in the chloroplasts - binds and promotes CYP20-3 to transfer electron (e-) from thioredoxins (i.e., type-f2 and -x) to 2-Cys peroxiredoxin B (2-CysPrxB) or serine acetyltransferase 1 (SAT1). Reduction (activation) of 2-CysPrxB then optimizes peroxide detoxification and carbon metabolisms in the photosynthesis, whereas the activation of SAT1 stimulates sulfur assimilation which in turn coordinates redox-resolved nucleus gene expressions in defense responses against biotic and abiotic stresses. Thus, we conclude that CYP20-3 is positioned as a unique metabolic hub in the interface between photosynthesis (light) and OPDA signaling, where controls resource (e-) allocations between plant growth and defense responses.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclofilinas/metabolismo , Luz , Oxirredução/efeitos da radiação , Fotossíntese/efeitos da radiação , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa