RESUMO
The widely-distributed North American species Peromyscus leucopus and P. maniculatus of cricetine rodents are, between them, important natural reservoirs for several zoonotic diseases of humans: Lyme disease, human granulocytic anaplasmosis, babesiosis, erhlichiosis, hard tickborne relapsing fever, Powassan virus encephalitis, hantavirus pulmonary syndrome, and plague. While these infections are frequently disabling and sometimes fatal for humans, the peromyscines display little pathology and apparently suffer few consequences, even when prevalence of persistent infection in a population is high. While these Peromyscus spp. are unable to clear some of the infections, they appear to have partial resistance, which limits the burden of the pathogen. In addition, they display traits of infection tolerance, which reduces the damage of the infection. Research on these complementary resistance and tolerance phenomena in Peromyscus has relevance both for disease control measures targeting natural reservoirs and for understanding the mechanisms of the comparatively greater sickness of many humans with these and other infections.
Assuntos
Bactérias/patogenicidade , Infecções Bacterianas/imunologia , Reservatórios de Doenças/microbiologia , Resistência à Doença/imunologia , Tolerância Imunológica , Peromyscus/imunologia , Peromyscus/microbiologia , Animais , Humanos , VirulênciaRESUMO
Relapsing fever agents like Borrelia hermsii undergo multiphasic antigenic variation that is attributable to spontaneous DNA non-reciprocal transpositions at a particular locus in the genome. This genetic switch results in a new protein being expressed on the cell surface, allowing cells with that phenotype to escape prevailing immunity. But the switch occurs in only one of several genomes in these spirochetes, and a newly-switched gene is effectively "recessive" until homozygosity is achieved. The longer that descendants of the switched cell expressed both old and new proteins, the longer this lineage risks neutralization by antibody to the old protein. We investigated the implications for antigenic variation of the phenotypic lag that polyploidy would confer on cells. We first experimentally determined the average genome copy number in daughter cells after division during mouse infection with B. hermsii strain HS1. We then applied discrete deterministic and stochastic simulations to predict outcomes when genomes were equably segregated either linearly, i.e. according to their position in one-dimensional arrays, or randomly partitioned, as for a sphere. Linear segregation replication provided for a lag in achievement of homozygosity that was significantly shorter than could be achieved under the random segregation condition. For cells with 16 genomes, this would be a 4-generation lag. A model incorporating the immune response and evolved matrices of switch rates indicated a greater fitness for polyploid over monoploid bacteria in terms of duration of infection.
Assuntos
Variação Antigênica/fisiologia , Borrelia/fisiologia , Animais , Variação Antigênica/genética , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Borrelia/citologia , Borrelia/genética , Borrelia/imunologia , Feminino , Genoma Bacteriano/genética , Camundongos , Camundongos SCID/microbiologia , Microscopia de Contraste de Fase , Reação em Cadeia da Polimerase , Poliploidia , Febre Recorrente/imunologia , Febre Recorrente/microbiologiaRESUMO
To identify and characterize surface proteins expressed by the relapsing fever (RF) agent Borrelia hermsii in the blood of infected mice, we used a cell-free filtrate of their blood to immunize congenic naive mice. The resultant antiserum was used for Western blotting of cell lysates, and gel slices corresponding to reactive bands were subjected to liquid chromatography-tandem mass spectrometry, followed by a search of the proteome database with the peptides. One of the immunogens was identified as the BHA007 protein, which is encoded by a 174-kb linear plasmid. BHA007 had sequence features of lipoproteins, was surface exposed by the criteria of in situ protease susceptibility and agglutination of Vtp(-) cells by anti-BHA007 antibodies, and was not essential for in vitro growth. BHA007 elicited antibodies during experimental infection of mice, but immunization with recombinant protein did not confer protection against needle-delivered infection. Open reading frames (ORFs) orthologous to BHA007 were found on large plasmids of other RF species, including the coding sequences for the CihC proteins of Borrelia duttonii and B. recurrentis, but not in Lyme disease Borrelia species. Recombinant BHA007 bound both human and bovine fibronectin with Kd (dissociation constant) values of 22 and 33 nM, respectively, and bound to C4-binding protein with less affinity. The distant homology of BHA007 and its orthologs to BBK32 proteins of Lyme disease species, as well as to previously described BBK32-like proteins in relapsing fever species, indicates that BHA007 is a member of a large family of multifunctional proteins in Borrelia species that bind to fibronectin as well as other host proteins.
Assuntos
Adesinas Bacterianas/metabolismo , Infecções por Borrelia/metabolismo , Febre Recorrente/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/imunologia , Animais , Antígenos de Bactérias/análise , Borrelia , Infecções por Borrelia/imunologia , Modelos Animais de Doenças , Soros Imunes , Camundongos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Febre Recorrente/imunologia , Análise de Sequência de DNA , Spirochaetales/metabolismoRESUMO
Borrelia miyamotoi sensu lato, a relapsing fever Borrelia sp., is transmitted by the same ticks that transmit B. burgdorferi (the Lyme disease pathogen) and occurs in all Lyme disease-endemic areas of the United States. To determine the seroprevalence of IgG against B. miyamotoi sensu lato in the northeastern United States and assess whether serum from B. miyamotoi sensu lato-infected persons is reactive to B. burgdorferi antigens, we tested archived serum samples from area residents during 1991-2012. Of 639 samples from healthy persons, 25 were positive for B. miyamotoi sensu lato and 60 for B. burgdorferi. Samples from ≈10% of B. miyamotoi sensu lato-seropositive persons without a recent history of Lyme disease were seropositive for B. burgdorferi. Our results suggest that human B. miyamotoi sensu lato infection may be common in southern New England and that B. burgdorferi antibody testing is not an effective surrogate for detecting B. miyamotoi sensu lato infection.
Assuntos
Infecções por Borrelia/epidemiologia , Borrelia/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Infecções por Borrelia/sangue , Infecções por Borrelia/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Doença de Lyme/sangue , Doença de Lyme/epidemiologia , Doença de Lyme/imunologia , Masculino , Pessoa de Meia-Idade , New England/epidemiologia , Estudos SoroepidemiológicosRESUMO
The white-footed deermouse Peromyscus leucopus, a long-lived rodent, is a key reservoir in North America for agents of several zoonoses, including Lyme disease, babesiosis, anaplasmosis, and a viral encephalitis. While persistently infected, this deermouse is without apparent disability or diminished fitness. For a model for inflammation elicited by various pathogens, the endotoxin lipopolysaccharide (LPS) was used to compare genome-wide transcription in blood by P. leucopus, Mus musculus, and Rattus norvegicus and adjusted for white cell concentrations. Deermice were distinguished from the mice and rats by LPS response profiles consistent with non-classical monocytes and alternatively-activated macrophages. LPS-treated P. leucopus, in contrast to mice and rats, also displayed little transcription of interferon-gamma and lower magnitude fold-changes in type 1 interferon-stimulated genes. These characteristics of P. leucopus were also noted in a Borrelia hermsii infection model. The phenomenon was associated with comparatively reduced transcription of endogenous retrovirus sequences and cytoplasmic pattern recognition receptors in the deermice. The results reveal a mechanism for infection tolerance in this species and perhaps other animal reservoirs for agents of human disease.
Lyme disease is an illness caused by bacteria that spread from infected animals to humans through tick bites. While most people fully recover after a week or two of antibiotic treatments, some will continue to experience debilitating symptoms due, potentially, to the way their immune system responded to the infection. In North America, the white-footed deermouse is one of the most common hosts of the Lyme disease bacteria. Despite its name, this rodent is more closely related to hamsters than to the mice or rats most often used in laboratory studies. Unlike mice and humans, however, deermice carrying Lyme disease bacteria do not get sick; in fact, most deermice living in a Lyme disease region will acquire the infection during their lifetimes, but it has little apparent effect on population numbers. These animals can also better tolerate infection from other microbes. To investigate why this is the case, Milovic et al. exposed mice, rats and deermice to a bacterial toxin that triggers inflammation common to encounters with many kinds of microbes. While all species exhibited physical symptoms as a result, blood samples revealed that mice and rats, but not deermice, reacted as if they were infected with viruses as well as bacteria. This was particularly the case for interferons, a group of hormone-like proteins that protect against viruses but can also lead to harmful long-term inflammatory effects. The deermice controlled their interferon responses to the bacterial substance in a way that mice and rats could not. Milovic et al. also checked which genes each species switched on after exposure to the toxin. This revealed that, unlike deer mice, rats and mice turned on some DNA sequences called endogenous retroviruses, which have no role in fighting infection from bacteria but can lead to harmful persistent inflammation. These results provide elements to better understand why recovery from Lyme disease may differ between people, with some patients retaining symptoms long after their infection has abated. They could also help to better grasp why other diseases, such as COVID-19, can be followed by fatigue and other symptoms of ongoing inflammation.
Assuntos
Endotoxinas , Interferon Tipo I , Humanos , Camundongos , Animais , Ratos , Lipopolissacarídeos , Interferon gama , ZoonosesRESUMO
Borrelia species of relapsing fever (RF) and Lyme disease (LD) lineages have linear chromosomes and both linear and circular plasmids. Unique to RF species, and little characterized to date, are large linear plasmids of â¼160 kb, or â¼10% of the genome. By a combination of Sanger and next-generation methods, we determined the sequences of large linear plasmids of two New World species: Borrelia hermsii, to completion of its 174-kb length, and B. turicatae, partially to 114 kb of its 150 kb. These sequences were then compared to corresponding sequences of the Old World species B. duttonii and B. recurrentis and to plasmid sequences of LD Borrelia species. The large plasmids were largely colinear, except for their left ends, about 27 kb of which was inverted in New World species. Approximately 60% of the B. hermsii lp174 plasmid sequence was repetitive for 6 types of sequence, and half of its open reading frames encoded hypothetical proteins not discernibly similar to proteins in the database. The central â¼25 kb of all 4 linear plasmids was syntenic for orthologous genes for plasmid maintenance or partitioning in Borrelia species. Of all the sequenced linear and circular plasmids in Borrelia species, the large plasmid's putative partition/replication genes were most similar to those of the 54-kb linear plasmids of LD species. Further evidence for shared ancestry was the observation that two of the hypothetical proteins were predicted to be structurally similar to the LD species' CspA proteins, which are encoded on the 54-kb plasmids.
Assuntos
Infecções por Borrelia/microbiologia , Borrelia/genética , Borrelia/patogenicidade , Plasmídeos/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Camundongos , Camundongos SCID , Filogenia , VirulênciaRESUMO
Ixodes scapularis Say, 1821 larvae were fed on mice and allowed to molt under laboratory conditions. A liquid chromatography-tandem mass spectrometry-based proteomic study was conducted to identify the type of mammalian proteins present in the derived nymphal ticks at different time intervals after molting. Albumin was present for 85 d; transferrin was present for 29 d; and, more importantly, hemoglobin remained detectable for up to 309 d postmolting. Peptides of actin, keratin, and tubulin are highly similar between mouse and tick, and therefore, unambiguous assignment of these proteins to different species was not possible. Establishing a time line for the persistence of hemoglobin, one of the most abundant blood proteins, at detectable levels in ticks after the bloodmeal and molting advances our efforts to use this protein to identify the host species.
Assuntos
Proteínas Sanguíneas/metabolismo , Ixodes/fisiologia , Camundongos/parasitologia , Sequência de Aminoácidos , Animais , Cromatografia Líquida , Feminino , Ixodes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Camundongos/metabolismo , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Espectrometria de Massas em Tandem , Fatores de TempoRESUMO
Vancomycin is active in vitro and in vivo in mouse systems against Lyme disease borrelia; however, there are no published data on the efficacy of vancomycin in patients with Lyme disease and no convincing theoretical advantages of vancomycin over the currently used and highly effective orally administered antimicrobial agents, including doxycycline, amoxicillin and cefuroxime axetil. In addition, vancomycin may cause a wide variety of potentially serious adverse effects and requires the placement of an intravenous catheter. It is concluded that vancomycin is a much less attractive option for the treatment of patients with early Lyme disease (or any other manifestation of Lyme disease), compared with the antimicrobials currently being used. Based on available evidence, clinical studies to evaluate the safety and efficacy of vancomycin for Lyme disease cannot be recommended.
Assuntos
Doença de Lyme , Vancomicina , Animais , Camundongos , Vancomicina/uso terapêutico , Relevância Clínica , Doença de Lyme/diagnóstico , Doença de Lyme/tratamento farmacológico , Antibacterianos/uso terapêutico , Doxiciclina/efeitos adversosRESUMO
The white-footed deermouse Peromyscus leucopus, a long-lived rodent, is a key reservoir for agents of several zoonoses, including Lyme disease. While persistently infected, this deermouse is without apparent disability or diminished fitness. For a model for inflammation elicited by various pathogens, the endotoxin lipopolysaccharide (LPS) was used to compare genome-wide transcription in blood by P. leucopus, Mus musculus and Rattus norvegicus and adjusted for white cell concentrations. Deermice were distinguished from the mice and rats by LPS response profiles consistent with non-classical monocytes and alternatively-activated macrophages. LPS-treated P. leucopus, in contrast to mice and rats, also displayed little transcription of interferon-gamma and lower magnitude fold-changes in type 1 interferon-stimulated genes. This was associated with comparatively reduced transcription of endogenous retrovirus sequences and cytoplasmic pattern recognition receptors in the deermice. The results reveal a mechanism for infection tolerance in this species and perhaps other animal reservoirs for agents of human disease.
RESUMO
The abundant and widely distributed deermice Peromyscus leucopus and P. maniculatus are important reservoirs for several different zoonotic agents in North America. For the pathogens they persistently harbor, these species are also examples of the phenomenon of infection tolerance. In the present study a prior observation of absent expression of the high-affinity Fc immunoglobulin gamma receptor I (FcγRI), or CD64, in P. leucopus was confirmed in an experimental infection with Borreliella burgdorferi, a Lyme disease agent. We demonstrate that the null phenotype is attributable to a long-standing inactivation of the Fcgr1 gene in both species by a deletion of the promoter and coding sequence for the signal peptide for FcγRI. The Fcgr1 pseudogene was also documented in the related species P. polionotus. Six other Peromyscus species, including P. californicus, have coding sequences for a full-length FcγRI, including a consensus signal peptide. An inference from reported phenotypes for null Fcgr1 mutations engineered in Mus musculus is that one consequence of pseudogenization of Fcgr1 is comparatively less inflammation during infection than in animals, including humans, with undisrupted, fully active genes.
RESUMO
BACKGROUNDAutoimmune diseases often have strong genetic associations with specific HLA-DR alleles. The synovial lesion in chronic inflammatory forms of arthritis shows marked upregulation of HLA-DR molecules, including in postinfectious Lyme arthritis (LA). However, the identity of HLA-DR-presented peptides, and therefore the reasons for these associations, has frequently remained elusive.METHODSUsing immunopeptidomics to detect HLA-DR-presented peptides from synovial tissue, we identified T cell epitopes from 3 extracellular matrix (ECM) proteins in patients with postinfectious LA, identified potential Borreliella burgdorferi-mimic (Bb-mimic) epitopes, and characterized T and B cell responses to these peptides or proteins.RESULTSOf 24 postinfectious LA patients, 58% had CD4+ T cell responses to at least 1 epitope of 3 ECM proteins, fibronectin-1, laminin B2, and/or collagen Vα1, and 17% of 52 such patients had antibody responses to at least 1 of these proteins. Patients with autoreactive T cell responses had significantly increased frequencies of HLA-DRB1*04 or -DRB1*1501 alleles and more prolonged arthritis. When tetramer reagents were loaded with ECM or corresponding Bb-mimic peptides, binding was only with the autoreactive T cells. A high percentage of ECM-autoreactive CD4+ T cells in synovial fluid were T-bet-expressing Th1 cells, a small percentage were RoRγt-expressing Th17 cells, and a minimal percentage were FoxP3-expressing Tregs.CONCLUSIONAutoreactive, proinflammatory CD4+ T cells and autoantibodies develop to ECM proteins in a subgroup of postinfectious LA patients who have specific HLA-DR alleles. Rather than the traditional molecular mimicry model, we propose that epitope spreading provides the best explanation for this example of infection-induced autoimmunity.FUNDINGSupported by National Institute of Allergy and Infectious Diseases R01-AI101175, R01-AI144365, and F32-AI125764; National Institute of Arthritis and Musculoskeletal and Skin Diseases K01-AR062098 and T32-AR007258; NIH grants P41-GM104603, R24-GM134210, S10-RR020946, S10-OD010724, S10-OD021651, and S10-OD021728; and the G. Harold and Leila Y. Mathers Foundation, the Eshe Fund, and the Lyme Disease and Arthritis Research Fund at Massachusetts General Hospital.
Assuntos
Artrite , Borrelia burgdorferi , Doença de Lyme , Humanos , Autoimunidade , Proteínas da Matriz Extracelular , Cadeias HLA-DRB1 , Peptídeos , Epitopos de Linfócito TRESUMO
Borrelia hermsii and other relapsing fever (RF) species are noted for their highly polymorphic surface antigens, the variable major proteins (VMP). Less is known about other surface proteins of these pathogens in either their vertebrate reservoirs or arthropod vectors. To further characterize these proteins, we elicited antibodies against VMP-less cells, noted antibody reactions against whole cells and cell components, and then subjected selected antigens to mass spectroscopy for amino acid sequencing for comparison against a B. hermsii genome database. One of the derived monoclonal antibodies, H0120, agglutinated spirochetes, and in Western blot analyses, it bound to a 14-kDa protein of whole cells and their membrane fractions but not after protease treatment. A search of open reading frames of the B. hermsii genome with extracted peptides identified the 14-kDa protein with bha128, a 453-nucleotide gene of the 175-kb linear plasmid. The bha128 gene was synthesized and expressed in Escherichia coli. The protein product was bound by antibody H0120. Genes homologous to bha128 occur in the RF species Borrelia turicatae, B. duttonii, and B. recurrentis but not in Lyme disease Borrelia species or other organisms. The following findings indicated an association of BHA128, renamed Alp, with the tick environment: (i) Alp was produced at higher levels at 23°C than at 34 °C; (ii) almost all spirochetes in tick salivary glands were bound by the H0120 antibody, but only ~1% of spirochetes in the blood of infected mice were bound; and (iii) infected mice produced antibodies to several B. hermsii antigens but not detectably to native or recombinant Alp.
Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Infecções por Borrelia/microbiologia , Borrelia/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos , Especificidade de Anticorpos , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Sequência de Bases , Infecções por Borrelia/imunologia , Feminino , Genoma Bacteriano , Camundongos , Camundongos SCID , Dados de Sequência Molecular , Mutação , Filogenia , Glândulas Salivares/microbiologia , Temperatura , CarrapatosAssuntos
Técnicas Bacteriológicas/métodos , Sangue/microbiologia , Borrelia burgdorferi/crescimento & desenvolvimento , Citratos/farmacologia , Doença de Lyme/diagnóstico , Animais , Anticoagulantes/farmacologia , Borrelia burgdorferi/efeitos dos fármacos , Meios de Cultura/química , Modelos Animais de Doenças , Humanos , Doença de Lyme/microbiologia , Camundongos , Camundongos SCID , Sensibilidade e Especificidade , Citrato de SódioRESUMO
We report the successful de novo sequencing of hemoglobin using a mass spectrometry-based approach combined with automatic data processing and manual validation for nine North American species with currently unsequenced genomes. The complete α and ß chain of all nine mammalian hemoglobin samples used in this study were successfully sequenced. These sequences will be appended to the existing database containing all known hemoglobins to be used for identification of the mammalian host species that provided the last blood meal for the tick vector of Lyme disease, Ixodes scapularis.
Assuntos
Hemoglobinas/química , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Cromatografia Líquida/métodos , Bases de Dados de Proteínas , Hemoglobinas/genética , Dados de Sequência Molecular , FilogeniaRESUMO
Deermice of the genus Peromyscus are well suited for addressing several questions of biologist interest, including the genetic bases of longevity, behavior, physiology, adaptation, and their ability to serve as disease vectors. Here, we explore a diversity outbred approach for dissecting complex traits in Peromyscus leucopus, a nontraditional genetic model system. We take advantage of a closed colony of deer-mice founded from 38 individuals and subsequently maintained for â¼40-60 generations. From 405 low-pass short-read sequenced deermice we accurate impute genotypes at 16 million single nucleotide polymorphisms. Conditional on observed genotypes simulations were conducted in which three different sized quantitative trait loci contribute to a complex trait under three different genetic models. Using a stringent significance threshold power was modest, largely a function of the percent variation attributable to the simulated quantitative trait loci, with the underlying genetic model having only a subtle impact. We additionally simulated 2,000 pseudo-individuals, whose genotypes were consistent with those observed in the genotyped cohort and carried out additional power simulations. In experiments employing more than 1,000 mice power is high to detect quantitative trait loci contributing greater than 2.5% to a complex trait, with a localization ability of â¼100 kb. We finally carried out a Genome-Wide Association Study on two demonstration traits, bleeding time and body weight, and uncovered one significant region. Our work suggests that complex traits can be dissected in founders-unknown P. leucopus colony mice and similar colonies in other systems using easily obtained genotypes from low-pass sequencing.