Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338934

RESUMO

Charcot-Marie-Tooth disease (CMT) rarely presents with painful symptoms, which mainly occur in association with myelin protein zero (MPZ) gene mutations. We aimed to further characterize the features of painful neuropathic phenotypes in MPZ-related CMT. We report on a 58-year-old woman with a longstanding history of intermittent migrant pain and dysesthesias. Examination showed minimal clinical signs of neuropathy along with mild changes upon electroneurographic examination, consistent with an intermediate pattern, and small-fiber loss upon skin biopsy. Genetic testing identified the heterozygous variant p.Trp101Ter in MPZ. We identified another 20 CMT patients in the literature who presented with neuropathic pain as a main feature in association with MPZ mutations, mostly in the extracellular MPZ domain; the majority of these patients showed late onset (14/20), with motor-nerve-conduction velocities predominantly in the intermediate range (12/20). It is hypothesized that some MPZ mutations could manifest with, or predispose to, neuropathic pain. However, the mechanisms linking MPZ mutations and pain-generating nerve changes are unclear, as are the possible role of modifier factors. This peculiar CMT presentation may be diagnostically misleading, as it is suggestive of an acquired pain syndrome rather than of an inherited neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth , Neuralgia , Neuropatia de Pequenas Fibras , Feminino , Humanos , Pessoa de Meia-Idade , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Proteína P0 da Mielina/genética , Mutação , Testes Genéticos , Neuralgia/etiologia , Neuralgia/genética , Neuropatia de Pequenas Fibras/genética
2.
Gut ; 72(11): 2123-2137, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36717219

RESUMO

OBJECTIVE: Exhausted hepatitis B virus (HBV)-specific CD8 T cells in chronic HBV infection are broadly heterogeneous. Characterisation of their functional impairment may allow to distinguish patients with different capacity to control infection and reconstitute antiviral function. DESIGN: HBV dextramer+CD8 T cells were analysed ex vivo for coexpression of checkpoint/differentiation markers, transcription factors and cytokines in 35 patients with HLA-A2+chronic hepatitis B (CHB) and in 29 control HBsAg negative CHB patients who seroconverted after NUC treatment or spontaneously. Cytokine production was also evaluated in HBV peptide-stimulated T cell cultures, in the presence or absence of antioxidant, polyphenolic, PD-1/PD-L1 inhibitor and TLR-8 agonist compounds and the effect on HBV-specific responses was further validated on additional 24 HLA-A2 negative CHB patients. RESULTS: Severely exhausted HBV-specific CD8 T cell subsets with high expression of inhibitory receptors, such as PD-1, TOX and CD39, were detected only in a subgroup of chronic viraemic patients. Conversely, a large predominance of functionally more efficient HBV-specific CD8 T cell subsets with lower expression of coinhibitory molecules and better response to in vitro immune modulation, typically detected after resolution of infection, was also observed in a proportion of chronic viraemic HBV patients. Importantly, the same subset of patients who responded more efficiently to in vitro immune modulation identified by HBV-specific CD8 T cell analysis were also identified by staining total CD8 T cells with PD-1, TOX, CD127 and Bcl-2. CONCLUSIONS: The possibility to distinguish patient cohorts with different capacity to respond to immune modulatory compounds in vitro by a simple analysis of the phenotypic CD8 T cell exhaustion profile deserves evaluation of its clinical applicability.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Hepatite B Crônica/tratamento farmacológico , Vírus da Hepatite B , Antígeno HLA-A2/metabolismo , Antígeno HLA-A2/farmacologia , Antígeno HLA-A2/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos
3.
J Hepatol ; 79(1): 50-60, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36893853

RESUMO

BACKGROUND & AIMS: In chronic HBV infection, elevated reactive oxygen species levels derived from dysfunctional mitochondria can cause increased protein oxidation and DNA damage in exhausted virus-specific CD8 T cells. The aim of this study was to understand how these defects are mechanistically interconnected to further elucidate T cell exhaustion pathogenesis and, doing so, to devise novel T cell-based therapies. METHODS: DNA damage and repair mechanisms, including parylation, CD38 expression, and telomere length were studied in HBV-specific CD8 T cells from chronic HBV patients. Correction of intracellular signalling alterations and improvement of antiviral T cell functions by the NAD precursor nicotinamide mononucleotide and by CD38 inhibition was assessed. RESULTS: Elevated DNA damage was associated with defective DNA repair processes, including NAD-dependent parylation, in HBV-specific CD8 cells of chronic HBV patients. NAD depletion was indicated by the overexpression of CD38, the major NAD consumer, and by the significant improvement of DNA repair mechanisms, and mitochondrial and proteostasis functions by NAD supplementation, which could also improve the HBV-specific antiviral CD8 T cell function. CONCLUSIONS: Our study delineates a model of CD8 T cell exhaustion whereby multiple interconnected intracellular defects, including telomere shortening, are causally related to NAD depletion suggesting similarities between T cell exhaustion and cell senescence. Correction of these deregulated intracellular functions by NAD supplementation can also restore antiviral CD8 T cell activity and thus represents a promising potential therapeutic strategy for chronic HBV infection. IMPACT AND IMPLICATIONS: Correction of HBV-specific CD8 T cell dysfunction is believed to represent a rational strategy to cure chronic HBV infection, which however requires a deep understanding of HBV immune pathogenesis to identify the most important targets for functional T cell reconstitution strategies. This study identifies a central role played by NAD depletion in the intracellular vicious circle that maintains CD8 T cell exhaustion, showing that its replenishment can correct impaired intracellular mechanisms and reconstitute efficient antiviral CD8 T cell function, with implications for the design of novel immune anti-HBV therapies. As these intracellular defects are likely shared with other chronic virus infections where CD8 exhaustion can affect virus clearance, these results can likely also be of pathogenetic relevance for other infection models.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , NAD/metabolismo , Linfócitos T CD8-Positivos , Espécies Reativas de Oxigênio/metabolismo , Antivirais/uso terapêutico , Antivirais/metabolismo , Vírus da Hepatite B , Hepatite B/patologia
4.
J Hepatol ; 74(4): 783-793, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33188902

RESUMO

BACKGROUND & AIMS: In chronic HBV infection, mitochondrial functions and proteostasis are dysregulated in exhausted HBV-specific CD8 T cells. To better characterise the potential involvement of deregulated protein degradation mechanisms in T cell exhaustion, we analysed lysosome-mediated autophagy in HBV-specific CD8 T cells. Bioactive compounds able to simultaneously target both mitochondrial functions and proteostasis were tested to identify optimal combination strategies to reconstitute efficient antiviral CD8 T cell responses in patients with chronic HBV infection. METHODS: Lysosome-mediated degradation pathways were analysed by flow cytometry in virus-specific CD8 T cells from patients with chronic HBV infection. Mitochondrial function, intracellular proteostasis, and cytokine production were evaluated in HBV-peptide-stimulated T cell cultures, in the presence or absence of the polyphenols resveratrol (RSV) and oleuropein (OLE) and their metabolites, either alone or in combination with other bioactive compounds. RESULTS: HBV-specific CD8 T cells from patients with CHB showed impaired autophagic flux. RSV and OLE elicited a significant improvement in mitochondrial, proteostasis and antiviral functions in CD8 T cells. Cytokine production was also enhanced by synthetic metabolites, which correspond to those generated by RSV and OLE metabolism in vivo, suggesting that these polyphenols may also display an effect after transformation in vivo. Moreover, polyphenolic compounds improved the T cell revitalising effect of mitochondria-targeted antioxidants and of programmed cell death protein 1/programmed cell death ligand 1 blockade. CONCLUSIONS: Simultaneously targeting multiple altered intracellular pathways with the combination of mitochondria-targeted antioxidants and natural polyphenols may represent a promising immune reconstitution strategy for the treatment of chronic HBV infection. LAY SUMMARY: In chronic hepatitis B, antiviral T lymphocytes are deeply impaired, with many altered intracellular functions. In vitro exposure to polyphenols, such as resveratrol and oleuropein, can correct some of the deregulated intracellular pathways and improve antiviral T cell function. This effect can be further strengthened by the association of polyphenols with antioxidant compounds in a significant proportion of patients. Thus, the combination of antioxidants and natural polyphenols represents a promising strategy for chronic hepatitis B therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepatite B Crônica , Compostos Fitoquímicos/farmacologia , Resveratrol/farmacologia , Antioxidantes/farmacologia , Células Cultivadas , Citocinas/biossíntese , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/metabolismo , Hepatite B Crônica/patologia , Humanos , Fatores Imunológicos , Glucosídeos Iridoides/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias Hepáticas/fisiologia , Polifenóis/farmacologia , Proteólise/efeitos dos fármacos , Deficiências na Proteostase
5.
Gastroenterology ; 157(1): 227-241.e7, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30930022

RESUMO

BACKGROUND & AIMS: One strategy to treat chronic hepatitis B virus (HBV) infection could be to increase the functions of virus-specific T cells. We performed a multicenter phase 2 study to evaluate the safety and efficacy of GS-4774, a yeast-based therapeutic vaccine engineered to express HBV antigens, given with tenofovir disoproxil fumarate (TDF) to untreated patients with chronic HBV infection. METHODS: We performed an open-label study at 34 sites in Canada, Italy, New Zealand, Romania, South Korea, and United States from July 2014 to August 2016. Adults who were positive for HB surface antigen (HBsAg) > 6 months and levels of HBV DNA ≥2000 IU/mL who had not received antiviral treatment for HBV within 3 months of screening were randomly assigned (1:2:2:2) to groups given oral TDF 300 mg daily alone (n = 27; controls) or with 2, 10, or 40 yeast units GS-4774 (n = 168), administered subcutaneously every 4 weeks until week 20 for a total of 6 doses. Blood samples were collected and analyzed and patients received regular physical examinations. Efficacy was measured by decrease in HBsAg from baseline to week 24. Specific responses to HBV (production of interferon gamma [IFNG], tumor necrosis factor [TNF], interleukin 2 [IL2], and degranulation) were measured in T cells derived from 12 HBeAg-negative patients with genotype D infections, after overnight or 10 days of stimulation of peripheral blood mononuclear cells with peptides from the entire HBV proteome. T-regulatory cells were analyzed for frequency and phenotype. Data from studies of immune cells were compared with data on reductions in HBsAg, HBV DNA, and alanine aminotransferase in blood samples from patients. RESULTS: GS-4774 was safe and well tolerated but did not produce significant decreases in levels of HBsAg. Production of IFNG, TNF, and IL2 increased significantly at weeks 24 and 48, compared with baseline, in HBV-specific CD8+ T cells from patients given GS-4774 but not from controls. GS-4774 had greater effects on CD8+ than CD4+ T cells, which were not affected at all or very weakly by TDF with or without GS-4774. GS-4774 did not affect responses of T cells to other viruses tested. HBV core peptides induced the greatest production of IFNG by T cells following overnight stimulation, whereas HBV envelope antigens did not induce a response. Following 10 days of stimulation, production of IFNG and TNF increased with time of exposure to GS-4774; the greatest levels of responses were to HBV envelope antigens followed by core and polymerase peptides. We observed a correlation in patients given GS-4774 between increased T-cell functions and reductions in numbers of T-regulatory cells. CONCLUSIONS: In a phase 2 study of patients with chronic HBV infection given TDF with or without GS-4774, we found that vaccination can increase production of IFNG, TNF, and IL2 by CD8+ T cells exposed to antigenic peptides, with little effect on CD4+ T cells. Although GS-4774 did not reduce levels of HBsAg in patients, its strong immune stimulatory effect on CD8+ T cells might be used in combination with other antiviral agents to boost the antivirus immune response. Clinicaltrials.gov no: NCT02174276.


Assuntos
Antivirais/uso terapêutico , Vacinas contra Hepatite B/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , Tenofovir/uso terapêutico , Adolescente , Adulto , Idoso , Linfócitos T CD8-Positivos/imunologia , DNA Viral , Quimioterapia Combinada , Feminino , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Humanos , Tolerância Imunológica/imunologia , Interferon gama/imunologia , Interleucina-2/imunologia , Masculino , Pessoa de Meia-Idade , Transativadores/imunologia , Fator de Necrose Tumoral alfa/imunologia , Carga Viral , Proteínas Virais Reguladoras e Acessórias , Adulto Jovem
6.
Cancer Immunol Immunother ; 69(8): 1589-1603, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32307580

RESUMO

Functional rescue of NK-cells in solid tumors represents a central aim for new immunotherapeutic strategies. We have conducted a genomic, phenotypic and functional analysis of circulating NK-cells from patients with HCV-related liver cirrhosis and hepatocellular carcinoma. NK-cells were sorted from patients with HCC or liver cirrhosis and from healthy donors. Comparative mRNA gene expression profiling by whole-human-genome microarrays of sorted NK-cells was followed by phenotypic and functional characterization. To further identify possible mediators of NK-cell dysfunction, an in vitro model using media conditioned with patients' and controls' plasma was set up. Metabolic and cell motility defects were identified at the genomic level. Dysregulated gene expression profile has been translated into reduced cytokine production and degranulation despite a prevalent phenotype of terminally differentiated NK-cells. NKG2D-downregulation, high SMAD2 phosphorylation and other phenotypic and molecular alterations suggested TGF-ß as possible mediator of this dysfunction. Blocking TGF-ß could partially restore functional defects of NK-cells from healthy donors, exposed to TGF-ß rich HCC patients' plasma, suggesting that TGF-ß among other molecules may represent a suitable target for immunotherapeutic intervention aimed at NK-cell functional restoration. By an unbiased approach, we have identified energy metabolism and cell motility defects of circulating NK-cells as main mechanisms responsible for functional NK-cell impairment in patients with hepatocellular carcinoma. This opens the way to test different approaches to restore NK-cell response in these patients.


Assuntos
Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Movimento Celular , Metabolismo Energético , Hepatite C/complicações , Células Matadoras Naturais/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Idoso , Carcinoma Hepatocelular/virologia , Estudos de Casos e Controles , Citocinas/metabolismo , Citotoxicidade Imunológica/imunologia , Feminino , Seguimentos , Hepacivirus/isolamento & purificação , Hepatite C/virologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Cirrose Hepática/imunologia , Cirrose Hepática/virologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/virologia , Masculino , Prognóstico , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas
7.
Development ; 144(20): 3686-3697, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28893945

RESUMO

The Zfp423/ZNF423 gene encodes a 30-zinc-finger transcription factor involved in key developmental pathways. Although null Zfp423 mutants develop cerebellar malformations, the underlying mechanism remains unknown. ZNF423 mutations are associated with Joubert Syndrome, a ciliopathy causing cerebellar vermis hypoplasia and ataxia. ZNF423 participates in the DNA-damage response (DDR), raising questions regarding its role as a regulator of neural progenitor cell cycle progression in cerebellar development. To characterize in vivo the function of ZFP423 in neurogenesis, we analyzed allelic murine mutants in which distinct functional domains are deleted. One deletion impairs mitotic spindle orientation, leading to premature cell cycle exit and Purkinje cell (PC) progenitor pool deletion. The other deletion impairs PC differentiation. In both mutants, cell cycle progression is remarkably delayed and DDR markers are upregulated in cerebellar ventricular zone progenitors. Our in vivo evidence sheds light on the domain-specific roles played by ZFP423 in different aspects of PC progenitor development, and at the same time strengthens the emerging notion that an impaired DDR may be a key factor in the pathogenesis of JS and other ciliopathies.


Assuntos
Ciclo Celular , Proteínas de Ligação a DNA/fisiologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Células de Purkinje/citologia , Fatores de Transcrição/fisiologia , Anormalidades Múltiplas/genética , Alelos , Animais , Diferenciação Celular , Divisão Celular , Proliferação de Células , Cerebelo/anormalidades , Dano ao DNA , Anormalidades do Olho/genética , Deleção de Genes , Doenças Renais Císticas/genética , Camundongos , Mutação , Domínios Proteicos , Retina/anormalidades , Fuso Acromático/metabolismo , Dedos de Zinco
9.
Int J Mol Sci ; 20(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195619

RESUMO

Chronic hepatitis B virus (HBV) infection represents a worldwide public health concern with approximately 250 million people chronically infected and at risk of developing liver cirrhosis and hepatocellular carcinoma. Nucleos(t)ide analogues (NUC) are the most widely used therapies for HBV infection, but they often require long-lasting administration to avoid the risk of HBV reactivation at withdrawal. Therefore, there is an urgent need to develop novel treatments to shorten the duration of NUC therapy by accelerating virus control, and to complement the effect of available anti-viral therapies. In chronic HBV infection, virus-specific T cells are functionally defective, and this exhaustion state is a key determinant of virus persistence. Reconstitution of an efficient anti-viral T cell response may thus represent a rational strategy to treat chronic HBV patients. In this perspective, the enhancement of adaptive immune responses by a checkpoint inhibitor blockade, specific T cell vaccines, lymphocyte metabolism targeting, and autologous T cell engineering, including chimeric antigen receptor (CAR) and TCR-redirected T cells, constitutes a promising immune modulatory approach for a therapeutic restoration of protective immunity. The advances of the emerging immune-based therapies in the setting of the HBV research field will be outlined.


Assuntos
Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Hepatite B/terapia , Imunoterapia , Engenharia Genética , Hepatite B/genética , Humanos , Linfócitos T/metabolismo , Vacinação
10.
Int J Mol Sci ; 20(20)2019 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-31614928

RESUMO

Immune modulatory therapies are widely believed to represent potential therapeutic strategies for chronic hepatitis B infection (CHB). Among the cellular targets for immune interventions, Natural Killer (NK) cells represent possible candidates because they have a key role in anti-viral control by producing cytokines and by exerting cytotoxic functions against virus-infected cells. However, in patients with chronic hepatitis B, NK cells have been described to be more pathogenic than protective with preserved cytolytic activity but with a poor capacity to produce anti-viral cytokines. In addition, NK cells can exert a regulatory activity and possibly suppress adaptive immune responses in the setting of persistent viral infections. Consequently, a potential drawback of NK-cell targeted modulatory interventions is that they can potentiate the suppressive NK cell effect on virus-specific T cells, which further causes impairment of exhausted anti-viral T cell functions. Thus, clinically useful NK-cell modulatory strategies should be not only suited to improve positive anti-viral NK cell functions but also to abrogate T cell suppression by NK cell-mediated T cell killing. This review outlines the main NK cell features with a particular focus on CHB infection. It describes different mechanisms involved in NK-T cell interplay as well as how NK cells can have positive anti-viral effector functions and negative suppressive effects on T cells activity. This review discusses how modulation of their balance can have potential therapeutic implications.


Assuntos
Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/imunologia , Células Matadoras Naturais/imunologia , Antivirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Vírus da Hepatite B/imunologia , Humanos , Imunoterapia , Células Matadoras Naturais/enzimologia , Ativação Linfocitária/imunologia
11.
Hepatology ; 62(6): 1697-709, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26361374

RESUMO

UNLABELLED: Natural killer (NK) and hepatitis B virus (HBV)-specific T cells are functionally impaired in chronic hepatitis B (CHB). Understanding to what extent nucleos(t)ide analogue (NUC) therapy can improve T- and NK-cell responses is important in the perspective of immunomonitoring strategies for a safe and earlier NUC withdrawal and of novel combination therapies based on modulation of antiviral immunity. To gain further insights into T/NK-cell interplay, we studied NK-cell phenotype and function in hepatitis B e antigen-negative chronic HBV patients either untreated (25) or NUC treated (36 hepatitis B surface antigen [HBsAg](+) and 10 HBsAg(-)/hepatitis B surface antibody [anti-HBs](+)). Interferon-gamma, interleukin-2, and tumor necrosis factor alpha (TNF-α) production by HBV-specific T cells was also analyzed in NUC-treated patients. NK cells from chronic naïve patients showed an "inflammatory" phenotype defined by increased expression of TNF-related apoptosis-inducing ligand (TRAIL), CD38, and Ki67 that significantly declined upon viremia suppression and alanine aminotransferase normalization induced by NUC therapy. Reversion to a quiescent NK-cell phenotype was associated with restoration of the HBV-specific T-cell function. T- and NK-cell responses showed an inverse correlation, with an opposite behavior in individual NUC-treated patients. NK-cell depletion as well as TRAIL and NKG2D pathway blockade induced a significant improvement of the HBV-specific T-cell function. CONCLUSIONS: NK cells can express regulatory activity on T cells in NUC-treated patients with prevalent inhibition of CD4 T cells, likely needed to limit persistent T-cell activation. NK-cell phenotype is modulated by NUC therapy and its reversion to quiescence mirrors efficient HBV-specific T-cell responses. Thus, changes of NK-cell phenotype may predict acquisition of antiviral control before anti-HBs seroconversion and represent the groundwork for future studies aimed at assessing whether NK phenotyping can be translated into the clinical practice to guide NUC suspension.


Assuntos
Antivirais/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/imunologia , Células Matadoras Naturais/fisiologia , Linfócitos T/fisiologia , Feminino , Antígenos E da Hepatite B/sangue , Hepatite B Crônica/sangue , Humanos , Masculino , Nucleosídeos , Nucleotídeos , Fenótipo
12.
Development ; 139(13): 2308-20, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22669821

RESUMO

By serving as the sole output of the cerebellar cortex, integrating a myriad of afferent stimuli, Purkinje cells (PCs) constitute the principal neuron in cerebellar circuits. Several neurodegenerative cerebellar ataxias feature a selective cell-autonomous loss of PCs, warranting the development of regenerative strategies. To date, very little is known as to the regulatory cascades controlling PC development. During central nervous system development, the proneural gene neurogenin 2 (Neurog2) contributes to many distinct neuronal types by specifying their fate and/or dictating development of their morphological features. By analyzing a mouse knock-in line expressing Cre recombinase under the control of Neurog2 cis-acting sequences we show that, in the cerebellar primordium, Neurog2 is expressed by cycling progenitors cell-autonomously fated to become PCs, even when transplanted heterochronically. During cerebellar development, Neurog2 is expressed in G1 phase by progenitors poised to exit the cell cycle. We demonstrate that, in the absence of Neurog2, both cell-cycle progression and neuronal output are significantly affected, leading to an overall reduction of the mature cerebellar volume. Although PC fate identity is correctly specified, the maturation of their dendritic arbor is severely affected in the absence of Neurog2, as null PCs develop stunted and poorly branched dendrites, a defect evident from the early stages of dendritogenesis. Thus, Neurog2 represents a key regulator of PC development and maturation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Ciclo Celular , Cerebelo/crescimento & desenvolvimento , Dendritos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células de Purkinje/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Cerebelo/fisiologia , Feminino , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurogênese/fisiologia , Gravidez , Transplante de Células-Tronco , Células-Tronco/fisiologia
13.
Mol Cytogenet ; 17(1): 8, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589928

RESUMO

Mosaic chromosomal anomalies arising in the product of conception and the final fetal chromosomal arrangement are expression of complex biological mechanisms. The rescue of unbalanced chromosome with selection of the most viable cell line/s in the embryo and the unfavourable imbalances in placental tissues was documented in our previous paper and in the literature. We report four additional cases with mosaic derivative chromosomes in different feto-placental tissues, further showing the instability of an intermediate gross imbalance as a frequent mechanism of de novo cryptic deletions and duplications. In conclusion we underline how the extensive remodeling of unbalanced chromosomes in placental tissues represents the 'backstage' of de novo structural rearrangements, as the early phases of a long selection process that the genome undergo during embryogenesis.

14.
Genes (Basel) ; 15(2)2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38397209

RESUMO

Germline variants occurring in BRCA1 and BRCA2 give rise to hereditary breast and ovarian cancer (HBOC) syndrome, predisposing to breast, ovarian, fallopian tube, and peritoneal cancers marked by elevated incidences of genomic aberrations that correspond to poor prognoses. These genes are in fact involved in genetic integrity, particularly in the process of homologous recombination (HR) DNA repair, a high-fidelity repair system for mending DNA double-strand breaks. In addition to its implication in HBOC pathogenesis, the impairment of HR has become a prime target for therapeutic intervention utilizing poly (ADP-ribose) polymerase (PARP) inhibitors. In the present review, we introduce the molecular roles of HR orchestrated by BRCA1 and BRCA2 within the framework of sensitivity to PARP inhibitors. We examine the genetic architecture underneath breast and ovarian cancer ranging from high- and mid- to low-penetrant predisposing genes and taking into account both germline and somatic variations. Finally, we consider higher levels of complexity of the genomic landscape such as polygenic risk scores and other approaches aiming to optimize therapeutic and preventive strategies for breast and ovarian cancer.


Assuntos
Genes BRCA2 , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo de DNA por Recombinação , Quebras de DNA de Cadeia Dupla , Poli(ADP-Ribose) Polimerases/genética
15.
Gut ; 61(7): 1076-84, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22337949

RESUMO

BACKGROUND: Hepatitis C virus (HCV) persistence is associated with impaired CD8 functions. Whether functional restoration of CD8 T cells chronically exposed to antigen can be obtained once the antigen is removed remains to be clarified. OBJECTIVE: To determine whether clearance of HCV by antiviral treatment can fully restore the antiviral function of HCV-specific CD8 cells. DESIGN: Peripheral blood HCV-, Flu- and cytomegalovirus (CMV)-specific CD8 cells were quantified by tetramer staining in 28 patients whose HCV infection resolved after peginterferon or peginterferon/ribavirin treatment for either acute or chronic hepatitis and in eight subjects with acute HCV infection which resolved spontaneously for comparison. HCV-specific CD8 cells were evaluated for their phenotypic and functional characteristics by comparing different patient groups and CD8 cells with different viral specificities in the same patients. RESULTS: Sustained viral response (SVR) did not lead to full maturation of a functional memory CD8 cell response. In particular, SVR in chronic infection was associated with a greater level of T cell dysfunction than responders after acute infection, who showed HCV-specific CD8 responses comparable to those of spontaneous resolvers but weaker than those of Flu-specific CD8 cells. Higher programmed death (PD)-1 expression was detected on HCV than on Flu- and CMV-specific CD8 cells and the effect of PD-1/PD-L1 blockade was better in SVRs after chronic than after acute HCV infection. CONCLUSION: A better restoration of HCV-specific CD8 function was detectable after SVR in patients with acute hepatitis than in those with chronic disease. Thus, the difficulty in achieving a complete restoration of the antiviral T cell function should be considered in the design of immunomodulatory therapies.


Assuntos
Antivirais/uso terapêutico , Proteínas Reguladoras de Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Receptor de Morte Celular Programada 1/metabolismo , Ribavirina/uso terapêutico , Antivirais/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Feminino , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Humanos , Masculino , Ribavirina/farmacologia , Carga Viral/efeitos dos fármacos
16.
Eur J Med Genet ; 66(11): 104847, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37751797

RESUMO

The finding of variants of uncertain significance (VUS) in the activity of a diagnostic genetic laboratory is a common issue, which is however provisional and needs to be periodically re-evaluated, due to the continuous advancements in our knowledge of the genetic diseases. Neurofibromatosis type 1, caused by the occurrence of heterozygous pathogenic NF1 variants, is a good model for studying the evolution of VUS, due to the widespread use of genetic testing for the disease, the constant enrichment of the international databases with NF1 variants and the full adult penetrance of the disease, which makes genotyping the parents a crucial step in the diagnostic workflow. The present study retrospectively reviewed and reinterpreted the genetic test results of NF1 in a diagnostic genetic laboratory in the period from January 1, 2000 to December 31, 2020. All the VUS were reinterpreted using the 2015 consensus standards and guidelines for the interpretation. Out of 589 NF1 genetic tests which were performed in the period, a total of 85 VUS were found and reinterpreted in 72 cases (84.7%): 21 (29.2%) were reclassified as benign/likely benign, whereas 51 (70.8%) were recoded as pathogenic/likely pathogenic with a significant trend distribution (Chi square test for trend p = 0.005). Synonymous VUS have mainly been reclassified as class 1 and 2 (7/8, 87.5%), whereas missense variants have been attributed to class 4 and 5 in 38 out of the 58 cases (65.5%). These findings underline an improvement in the classification of variants over time, suggesting that a reinterpretation of the genetic tests should be routinely performed to support the physicians in the clinical diagnosis of genetic diseases.


Assuntos
Predisposição Genética para Doença , Neurofibromatose 1 , Adulto , Humanos , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Estudos Retrospectivos , Testes Genéticos/métodos , Mutação de Sentido Incorreto
17.
Heliyon ; 9(12): e22680, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107324

RESUMO

NK cells infiltrating Hepatocellular Carcinoma (HCC) may express residency markers such as Integrin Subunit Alpha 1 (CD49a) that have been associated with nurturing functions in the decidua, and characterized by the production of angiogenic factors as well as loss of cytotoxicity. CIBERSORT, a computational analysis method for quantifying cell fractions from bulk tissue gene expression profiles, was used to estimate the infiltrating immune cell composition of the tumor microenvironment from gene expression profiles of a large cohort of 225 HCCs in the public GEO database. Decidual-like CD49a+ NK cells, in addition to another 22 immune cell populations, were characterized and thoroughly investigated so that HCC cell heterogeneity in a large cohort of 225 HCCs from the public GEO database could be studied. An inverse correlation of the expression of CD49a+ NK-cells and CD8+ T-cells suggested a negative association with clinical outcomes. This result was confirmed in a further validation cohort of 100 HCC patients from The Cancer Genome Atlas, Liver Hepatocellular Carcinoma (TCGA-LIHC). Cox regression analysis did not identify CD49a+ cells as a variable independently associated with survival. However, a more abundant infiltrate of this subset was present in patients at a more advanced pathological and clinical HCC stage. In conclusion, we found that NK cells, with a decidual-like gene expression profile, are enriched in HCC, and their abundance increases not only in tumor size but also at advanced stages of the disease suggesting that these cells play a role in tumor growth. For this reason, these NK cells may represent a possible new target for immunotherapeutic approaches in HCC.

18.
Genes (Basel) ; 14(6)2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37372421

RESUMO

Novel approaches to uncover the molecular etiology of neurodevelopmental disorders (NDD) are highly needed. Even using a powerful tool such as whole exome sequencing (WES), the diagnostic process may still prove long and arduous due to the high clinical and genetic heterogeneity of these conditions. The main strategies to improve the diagnostic rate are based on family segregation, re-evaluation of the clinical features by reverse-phenotyping, re-analysis of unsolved NGS-based cases and epigenetic functional studies. In this article, we described three selected cases from a cohort of patients with NDD in which trio WES was applied, in order to underline the typical challenges encountered during the diagnostic process: (1) an ultra-rare condition caused by a missense variant in MEIS2, identified through the updated Solve-RD re-analysis; (2) a patient with Noonan-like features in which the NGS analysis revealed a novel variant in NIPBL causing Cornelia de Lange syndrome; and (3) a case with de novo variants in genes involved in the chromatin-remodeling complex, for which the study of the epigenetic signature excluded a pathogenic role. In this perspective, we aimed to (i) provide an example of the relevance of the genetic re-analysis of all unsolved cases through network projects on rare diseases; (ii) point out the role and the uncertainties of the reverse phenotyping in the interpretation of the genetic results; and (iii) describe the use of methylation signatures in neurodevelopmental syndromes for the validation of the variants of uncertain significance.


Assuntos
Síndrome de Cornélia de Lange , Doenças não Diagnosticadas , Humanos , Sequenciamento do Exoma , Doenças não Diagnosticadas/genética , Testes Genéticos , Síndrome de Cornélia de Lange/genética , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Doenças Raras/genética , Proteínas de Ciclo Celular/genética
19.
J Cardiovasc Med (Hagerstown) ; 24(12): 864-870, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942788

RESUMO

AIMS: Brugada syndrome (BrS) is an inherited arrhythmic disease characterized by a coved ST-segment elevation in the right precordial electrocardiogram leads (type 1 ECG pattern) and is associated with a risk of malignant ventricular arrhythmias and sudden cardiac death. In order to assess the predictive value of the Shanghai Score System for the presence of a SCN5A mutation in clinical practice, we studied a cohort of 125 patients with spontaneous or fever/drug-induced BrS type 1 ECG pattern, variably associated with symptoms and a positive family history. METHODS: The Shanghai Score System items were collected for each patient and PR and QRS complex intervals were measured. Patients were genotyped through a next-generation sequencing (NGS) custom panel for the presence of SCN5A mutations and the common SCN5A polymorphism (H558R). RESULTS: The total Shanghai Score was higher in SCN5A+ patients than in SCN5A- patients. The 81% of SCN5A+ patients and the 100% of patients with a SCN5A truncating variant exhibit a spontaneous type 1 ECG pattern. A significant increase in PR (P = 0.006) and QRS (P = 0.02) was detected in the SCN5A+ group. The presence of the common H558R polymorphism did not significantly correlate with any of the items of the Shanghai Score, nor with the total score of the system. CONCLUSION: Data from our study suggest the usefulness of Shanghai Score collection in clinical practice in order to maximize genetic test appropriateness. Our data further highlight SCN5A mutations as a cause of conduction impairment in BrS patients.


Assuntos
Síndrome de Brugada , Humanos , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/genética , China/epidemiologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Arritmias Cardíacas , Mutação , Eletrocardiografia
20.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37768732

RESUMO

Retinitis pigmentosa (RP) is the most common inherited retinal disease (IRD) and is characterized by photoreceptor degeneration and progressive vision loss. We report 4 patients presenting with RP from 3 unrelated families with variants in TBC1D32, which to date has never been associated with an IRD. To validate TBC1D32 as a putative RP causative gene, we combined Xenopus in vivo approaches and human induced pluripotent stem cell-derived (iPSC-derived) retinal models. Our data showed that TBC1D32 was expressed during retinal development and that it played an important role in retinal pigment epithelium (RPE) differentiation. Furthermore, we identified a role for TBC1D32 in ciliogenesis of the RPE. We demonstrated elongated ciliary defects that resulted in disrupted apical tight junctions, loss of functionality (delayed retinoid cycling and altered secretion balance), and the onset of an epithelial-mesenchymal transition-like phenotype. Last, our results suggested photoreceptor differentiation defects, including connecting cilium anomalies, that resulted in impaired trafficking to the outer segment in cones and rods in TBC1D32 iPSC-derived retinal organoids. Overall, our data highlight a critical role for TBC1D32 in the retina and demonstrate that TBC1D32 mutations lead to RP. We thus identify TBC1D32 as an IRD-causative gene.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Retinose Pigmentar , Humanos , Retina , Retinose Pigmentar/genética , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina , Proteínas Adaptadoras de Transdução de Sinal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa