RESUMO
Much has been learned about transcriptional cascades and networks from large-scale systems analyses of high-throughput datasets. However, analysis methods that optimize statistical power through simultaneous evaluation of thousands of ChIP-seq peaks or differentially expressed genes possess substantial limitations in their ability to uncover mechanistic principles of transcriptional control. By examining nascent transcript RNA-seq, ChIP-seq, and binding motif datasets from lipid A-stimulated macrophages with increased attention to the quantitative distribution of signals, we identified unexpected relationships between the in vivo binding properties of inducible transcription factors, motif strength, and transcription. Furthermore, rather than emphasizing common features of large clusters of co-regulated genes, our results highlight the extent to which unique mechanisms regulate individual genes with key biological functions. Our findings demonstrate the mechanistic value of stringent interrogation of well-defined sets of genes as a complement to broader systems analyses of transcriptional cascades and networks.
Assuntos
Redes Reguladoras de Genes , Inflamação/genética , Inflamação/imunologia , Animais , Lipídeo A/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Fator de Resposta Sérica/metabolismoRESUMO
Liver fibrosis is a reversible wound-healing response involving TGFß1/SMAD activation of hepatic stellate cells (HSCs). It results from excessive deposition of extracellular matrix components and can lead to impairment of liver function. Here, we show that vitamin D receptor (VDR) ligands inhibit HSC activation by TGFß1 and abrogate liver fibrosis, whereas Vdr knockout mice spontaneously develop hepatic fibrosis. Mechanistically, we show that TGFß1 signaling causes a redistribution of genome-wide VDR-binding sites (VDR cistrome) in HSCs and facilitates VDR binding at SMAD3 profibrotic target genes via TGFß1-dependent chromatin remodeling. In the presence of VDR ligands, VDR binding to the coregulated genes reduces SMAD3 occupancy at these sites, inhibiting fibrosis. These results reveal an intersecting VDR/SMAD genomic circuit that regulates hepatic fibrogenesis and define a role for VDR as an endocrine checkpoint to modulate the wound-healing response in liver. Furthermore, the findings suggest VDR ligands as a potential therapy for liver fibrosis.
Assuntos
Redes Reguladoras de Genes , Fígado/metabolismo , Fígado/patologia , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Animais , Calcitriol/análogos & derivados , Fibrose/prevenção & controle , Estudo de Associação Genômica Ampla , Células Estreladas do Fígado , Fígado/lesões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Receptores de Calcitriol/agonistas , Proteína Smad3/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear receptor corepressor 1 (NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARß/δ, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans NCoR homolog, also robustly increased muscle mitochondria and respiration, suggesting conservation of NCoR1 function. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Músculo Esquelético/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Deleção de Genes , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mitocôndrias Musculares/metabolismo , Desenvolvimento Muscular , Correpressor 1 de Receptor Nuclear/genética , PPAR delta/metabolismo , PPAR beta/metabolismo , Condicionamento Físico AnimalRESUMO
The mammalian circadian clock is encoded by an autoregulatory transcription feedback loop that drives rhythmic behavior and gene expression in the brain and peripheral tissues. Transcriptomic analyses indicate cell type-specific effects of circadian cycles on rhythmic physiology, although how clock cycles respond to environmental stimuli remains incompletely understood. Here, we show that activation of the inducible transcription factor NF-κB in response to inflammatory stimuli leads to marked inhibition of clock repressors, including the Period, Cryptochrome, and Rev-erb genes, within the negative limb. Furthermore, activation of NF-κB relocalizes the clock components CLOCK/BMAL1 genome-wide to sites convergent with those bound by NF-κB, marked by acetylated H3K27, and enriched in RNA polymerase II. Abrogation of NF-κB during adulthood alters the expression of clock repressors, disrupts clock-controlled gene cycles, and impairs rhythmic activity behavior, revealing a role for NF-κB in both unstimulated and activated conditions. Together, these data highlight NF-κB-mediated transcriptional repression of the clock feedback limb as a cause of circadian disruption in response to inflammation.
Assuntos
Ritmo Circadiano/genética , NF-kappa B/fisiologia , Fatores de Transcrição ARNTL/metabolismo , Animais , Comportamento Animal , Proteínas CLOCK/metabolismo , Linhagem Celular , Cromatina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Proteínas Repressoras/metabolismo , Transcrição GênicaRESUMO
Skeletal muscles consist of fibers of differing metabolic activities and contractility, which become remodeled in response to chronic exercise, but the epigenomic basis for muscle identity and adaptation remains poorly understood. Here, we used chromatin immunoprecipitation sequencing of dimethylated histone 3 lysine 4 and acetylated histone 3 lysine 27 as well as transposase-accessible chromatin profiling to dissect cis-regulatory networks across muscle groups. We demonstrate that in vivo enhancers specify muscles in accordance with myofiber composition, show little resemblance to cultured myotube enhancers, and identify glycolytic and oxidative muscle-specific regulators. Moreover, we find that voluntary wheel running and muscle-specific peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc1a) transgenic (mTg) overexpression, which stimulate endurance performance in mice, result in markedly different changes to the epigenome. Exercise predominantly leads to enhancer hypoacetylation, whereas mTg causes hyperacetylation at different sites. Integrative analysis of regulatory regions and gene expression revealed that exercise and mTg are each associated with myocyte enhancer factor (MEF) 2 and estrogen-related receptor (ERR) signaling and transcription of genes promoting oxidative metabolism. However, exercise was additionally associated with regulation by retinoid X receptor (RXR), jun proto-oncogene (JUN), sine oculis homeobox factor (SIX), and other factors. Overall, our work defines the unique enhancer repertoires of skeletal muscles in vivo and reveals that divergent exercise-induced or PGC1α-driven epigenomic programs direct partially convergent transcriptional networks.
Assuntos
Epigênese Genética , Histonas/genética , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Condicionamento Físico Animal , Acetilação , Animais , Reprogramação Celular , Cromatina/química , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Glicólise/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Musculares/citologia , Músculo Esquelético/citologia , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Transdução de Sinais , Receptor ERRalfa Relacionado ao EstrogênioRESUMO
Upon androgen stimulation, PKN1-mediated histone H3 threonine 11 phosphorylation (H3T11P) promotes AR target gene activation. However, the underlying mechanism is not completely understood. Here, we show that WDR5, a subunit of the SET1/MLL complex, interacts with H3T11P, and this interaction facilitates the recruitment of the MLL1 complex and subsequent H3K4 tri-methylation (H3K4me3). Using ChIP-seq, we find that androgen stimulation results in a 6-fold increase in the number of H3T11P-marked regions and induces WDR5 colocalization to one third of H3T11P-enriched promoters, thus establishing a genome-wide relationship between H3T11P and recruitment of WDR5. Accordingly, PKN1 knockdown or chemical inhibition severely blocks WDR5 chromatin association and H3K4me3 on AR target genes. Finally, WDR5 is critical in prostate cancer cell proliferation and is hyperexpressed in human prostate cancers. Together, these results identify WDR5 as a critical epigenomic integrator of histone phosphorylation and methylation and as a major driver of androgen-dependent prostate cancer cell proliferation.
Assuntos
Androgênios/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Neoplasias da Próstata/metabolismo , Proteína Quinase C/metabolismo , Receptores Androgênicos/metabolismo , Treonina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Metilação , Proteína de Leucina Linfoide-Mieloide/genética , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteína Quinase C/genética , Receptores Androgênicos/genética , Transdução de Sinais , Treonina/genéticaRESUMO
How the glucocorticoid receptor (GR) activates some genes while potently repressing others remains an open question. There are three current models for suppression: transrepression via GR tethering to AP-1/NF-κB sites, direct GR association with inhibitory elements (nGREs), and GR recruitment of the corepressor GRIP1. To gain insights into GR suppression, we used genomic analyses and genome-wide profiling of GR, p65, and c-Jun in LPS-stimulated macrophages. We show that GR mediates both activation and repression at tethered sites, GREs, and GRIP1-bound elements, indicating that motif classification is insufficient to predict regulatory polarity of GR binding. Interestingly, sites of GR repression utilize GRIP1's corepressor function and display reduced histone acetylation. Together, these findings suggest that while GR occupancy confers hormone responsiveness, the receptor itself may not participate in the regulatory effects. Furthermore, transcriptional outcome is not established by sequence but is influenced by epigenetic regulators, context, and other unrecognized regulatory determinants.
Assuntos
Epigênese Genética , Genoma , Inflamação/genética , Receptores de Glucocorticoides/fisiologia , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Células Cultivadas , Mapeamento Cromossômico , Análise por Conglomerados , Sequência Consenso , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Histonas/metabolismo , Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta , Fatores de Transcrição/genética , TranscriptomaRESUMO
Mitochondrial dysfunction is increasingly recognized as a critical determinant of both hereditary and acquired kidney diseases. However, it remains poorly understood how mitochondrial metabolism is regulated to support normal kidney function and how its dysregulation contributes to kidney disease. Here, we show that the nuclear receptor estrogen-related receptor gamma (ERRγ) and hepatocyte nuclear factor 1 beta (HNF1ß) link renal mitochondrial and reabsorptive functions through coordinated epigenomic programs. ERRγ directly regulates mitochondrial metabolism but cooperatively controls renal reabsorption via convergent binding with HNF1ß. Deletion of ERRγ in renal epithelial cells (RECs), in which it is highly and specifically expressed, results in severe renal energetic and reabsorptive dysfunction and progressive renal failure that recapitulates phenotypes of animals and patients with HNF1ß loss-of-function gene mutations. Moreover, ERRγ expression positively correlates with renal function and is decreased in patients with chronic kidney disease (CKD). REC-ERRγ KO mice share highly overlapping renal transcriptional signatures with human patients with CKD. Together these findings reveal a role for ERRγ in directing independent and HNF1ß-integrated programs for energy production and use essential for normal renal function and the prevention of kidney disease.
Assuntos
Cistos/prevenção & controle , Metabolismo Energético , Epigenômica , Regulação da Expressão Gênica , Fator 1-beta Nuclear de Hepatócito/genética , Receptores de Estrogênio/genética , Insuficiência Renal Crônica/prevenção & controle , Animais , Cistos/metabolismo , Cistos/patologia , Fator 1-beta Nuclear de Hepatócito/metabolismo , Fator 1-beta Nuclear de Hepatócito/fisiologia , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Regiões Promotoras Genéticas , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/fisiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologiaRESUMO
The circadian clock acts at the genomic level to coordinate internal behavioural and physiological rhythms via the CLOCK-BMAL1 transcriptional heterodimer. Although the nuclear receptors REV-ERB-α and REV-ERB-ß have been proposed to form an accessory feedback loop that contributes to clock function, their precise roles and importance remain unresolved. To establish their regulatory potential, we determined the genome-wide cis-acting targets (cistromes) of both REV-ERB isoforms in murine liver, which revealed shared recognition at over 50% of their total DNA binding sites and extensive overlap with the master circadian regulator BMAL1. Although REV-ERB-α has been shown to regulate Bmal1 expression directly, our cistromic analysis reveals a more profound connection between BMAL1 and the REV-ERB-α and REV-ERB-ß genomic regulatory circuits than was previously suspected. Genes within the intersection of the BMAL1, REV-ERB-α and REV-ERB-ß cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erb-α and Rev-erb-ß function by creating double-knockout mice profoundly disrupted circadian expression of core circadian clock and lipid homeostatic gene networks. As a result, double-knockout mice show markedly altered circadian wheel-running behaviour and deregulated lipid metabolism. These data now unite REV-ERB-α and REV-ERB-ß with PER, CRY and other components of the principal feedback loop that drives circadian expression and indicate a more integral mechanism for the coordination of circadian rhythm and metabolism.
Assuntos
Ritmo Circadiano/fisiologia , Metabolismo Energético , Metabolismo dos Lipídeos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/genética , Ritmo Circadiano/genética , Criptocromos/deficiência , Criptocromos/genética , Criptocromos/metabolismo , Metabolismo Energético/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Homeostase/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Atividade Motora/genética , Atividade Motora/fisiologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Transcriptoma/genéticaRESUMO
In the macrophage, toll-like receptors (TLRs) are key sensors that trigger signaling cascades to activate inflammatory programs via the NF-κB gene network. However, the genomic network targeted by TLR/NF-κB activation and the molecular basis by which it is restrained to terminate activation and re-establish quiescence is poorly understood. Here, using chromatin immunoprecipitation sequencing (ChIP-seq), we define the NF-κB cistrome, which is comprised of 31,070 cis-acting binding sites responsive to lipopolysaccharide (LPS)-induced signaling. In addition, we demonstrate that the transcriptional repressor B-cell lymphoma 6 (Bcl-6) regulates nearly a third of the Tlr4-regulated transcriptome, and that 90% of the Bcl-6 cistrome is collapsed following Tlr4 activation. Bcl-6-deficient macrophages are acutely hypersensitive to LPS and, using comparative ChIP-seq analyses, we found that the Bcl-6 and NF-κB cistromes intersect, within nucleosomal distance, at nearly half of Bcl-6-binding sites in stimulated macrophages to promote opposing epigenetic modifications of the local chromatin. These results reveal a genomic strategy for controlling the innate immune response in which repressive and inductive cistromes establish a dynamic balance between macrophage quiescence and activation via epigenetically marked cis-regulatory elements.
Assuntos
Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Macrófagos/imunologia , NF-kappa B/genética , Animais , Sítios de Ligação , Células Cultivadas , Epigênese Genética , Lipopolissacarídeos/farmacologia , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6 , Receptor 4 Toll-Like/genéticaRESUMO
Mammalian metabolism is highly circadian and major hormonal circuits involving nuclear hormone receptors display interlinked diurnal cycling. However, mechanisms that logically explain the coordination of nuclear hormone receptors and the clock are poorly understood. Here we show that two circadian co-regulators, cryptochromes 1 and 2, interact with the glucocorticoid receptor in a ligand-dependent fashion and globally alter the transcriptional response to glucocorticoids in mouse embryonic fibroblasts: cryptochrome deficiency vastly decreases gene repression and approximately doubles the number of dexamethasone-induced genes, suggesting that cryptochromes broadly oppose glucocorticoid receptor activation and promote repression. In mice, genetic loss of cryptochrome 1 and/or 2 results in glucose intolerance and constitutively high levels of circulating corticosterone, suggesting reduced suppression of the hypothalamic-pituitary-adrenal axis coupled with increased glucocorticoid transactivation in the liver. Genomically, cryptochromes 1 and 2 associate with a glucocorticoid response element in the phosphoenolpyruvate carboxykinase 1 promoter in a hormone-dependent manner, and dexamethasone-induced transcription of the phosphoenolpyruvate carboxykinase 1 gene was strikingly increased in cryptochrome-deficient livers. These results reveal a specific mechanism through which cryptochromes couple the activity of clock and receptor target genes to complex genomic circuits underpinning normal metabolic homeostasis.
Assuntos
Ritmo Circadiano , Criptocromos/metabolismo , Regulação da Expressão Gênica , Receptores de Glucocorticoides/metabolismo , Animais , Corticosterona/sangue , Criptocromos/genética , Dexametasona/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Intolerância à Glucose/genética , Células HEK293 , Humanos , Fígado/enzimologia , Fígado/metabolismo , Camundongos , Fosfoenolpiruvato Carboxiquinase (GTP)/sangue , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismoRESUMO
Adiponectin (APN), a pleiotropic adipokine that exerts anti-inflammatory, antidiabetic, and antiatherogenic effects through its receptors (AdipoRs), AdipoR1 and AdipoR2, is an important therapeutic target. Factors regulating AdipoR expression in monocyte/macrophages are poorly understood, and the significance of polarized macrophage activation in controlling AdipoR expression and the APN-mediated inflammatory response has not been investigated. The aim of this study was to investigate whether the macrophage polarization phenotype controls the AdipoR expression and APN-mediated inflammatory response. With the use of mouse bone marrow and peritoneal macrophages, we demonstrate that classical activation (M1) of macrophages suppressed (40-60% of control) AdipoR expression, whereas alternative activation (M2) preserved it. Remarkably, the macrophage polarization phenotypes produced contrasting inflammatory responses to APN (EC50 5 µg/ml). In M1 macrophages, APN induced proinflammatory cytokines, TNF-α, IL-6, and IL-12 (>10-fold of control) and AdipoR levels. In contrast, in M2 macrophages, APN induced the anti-inflammatory cytokine IL-10 without altering AdipoR expression. Furthermore, M1 macrophages adapt to a cytokine environment by reversing AdipoR expression. APN induced AdipoR mRNA and protein expression by up-regulating liver X receptor-α (LXRα) in macrophages. These results provide the first evidence that macrophage polarization is a key determinant regulating AdipoR expression and differential APN-mediated macrophage inflammatory responses, which can profoundly influence their pathogenic role in inflammatory and metabolic disorders.
Assuntos
Adiponectina/metabolismo , Macrófagos/citologia , Receptores de Adiponectina/metabolismo , Animais , Aterosclerose , Linhagem Celular , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação , Resistência à Insulina , Interleucina-10/metabolismo , Receptores X do Fígado , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Receptores Nucleares Órfãos/metabolismo , FenótipoRESUMO
Molecular targeting of the two receptor interaction domains of the epigenetic repressor silencing mediator of retinoid and thyroid hormone receptors (SMRT(mRID)) produced a transplantable skeletal syndrome that reduced radial bone growth, increased numbers of bone-resorbing periosteal osteoclasts, and increased bone fracture risk. Furthermore, SMRT(mRID) mice develop spontaneous primary myelofibrosis, a chronic, usually idiopathic disorder characterized by progressive bone marrow fibrosis. Frequently linked to polycythemia vera and chronic myeloid leukemia, myelofibrosis displays high patient morbidity and mortality, and current treatment is mostly palliative. To decipher the etiology of this disease, we identified the thrombopoietin (Tpo) gene as a target of the SMRT-retinoic acid receptor signaling pathway in bone marrow stromal cells. Chronic induction of Tpo in SMRT(mRID) mice results in up-regulation of TGF-ß and PDGF in megakaryocytes, uncontrolled proliferation of bone marrow reticular cells, and fibrosis of the marrow compartment. Of therapeutic relevance, we show that this syndrome can be rescued by retinoid antagonists, demonstrating that the physical interface between SMRT and retinoic acid receptor can be a potential therapeutic target to block primary myelofibrosis disease progression.
Assuntos
Medula Óssea/metabolismo , Citocinas/metabolismo , Repressão Epigenética/fisiologia , Correpressor 2 de Receptor Nuclear/antagonistas & inibidores , Mielofibrose Primária/tratamento farmacológico , Transdução de Sinais/fisiologia , Trombopoetina/genética , Fosfatase Alcalina/sangue , Animais , Benzotiazóis , Cálcio/sangue , Proliferação de Células/efeitos dos fármacos , Primers do DNA/genética , Diaminas , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Luciferases , Megacariócitos/metabolismo , Camundongos , Correpressor 2 de Receptor Nuclear/genética , Compostos Orgânicos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Reação em Cadeia da Polimerase , Mielofibrose Primária/etiologia , Quinolinas , Trombopoetina/biossíntese , Fator de Crescimento Transformador beta/metabolismoRESUMO
Skeletal muscle is dynamically controlled by the balance of protein synthesis and degradation. Here we discover an unexpected function for the transcriptional repressor B cell lymphoma 6 (BCL6) in muscle proteostasis and strength in mice. Skeletal muscle-specific Bcl6 ablation in utero or in adult mice results in over 30% decreased muscle mass and force production due to reduced protein synthesis and increased autophagy, while it promotes a shift to a slower myosin heavy chain fibre profile. Ribosome profiling reveals reduced overall translation efficiency in Bcl6-ablated muscles. Mechanistically, tandem chromatin immunoprecipitation, transcriptomic and translational analyses identify direct BCL6 repression of eukaryotic translation initiation factor 4E-binding protein 1 (Eif4ebp1) and activation of insulin-like growth factor 1 (Igf1) and androgen receptor (Ar). Together, these results uncover a bifunctional role for BCL6 in the transcriptional and translational control of muscle proteostasis.
Assuntos
Proteostase , Proteínas Proto-Oncogênicas c-bcl-6 , Fatores de Transcrição , Animais , Camundongos , Imunoprecipitação da Cromatina , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genéticaRESUMO
Although peroxisome proliferator-activated receptor gamma (PPARgamma) agonists such as thiazolidinediones (TZDs) are widely used to treat type 2 diabetes, how its activation in individual tissues contributes to TZD's therapeutic action remains controversial. As TZDs are known to have receptor-independent effects, we sought to establish gain-of-function animal models to delineate the receptor's insulin-sensitizing actions. Unexpectedly, we find that selective activation of PPARgamma in adipocytes, but not in macrophages, is sufficient for whole-body insulin sensitization equivalent to systemic TZD treatment. In addition to improved adipokine, inflammatory, and lipid profiles, PPARgamma activation in mature adipocytes normalizes serum insulin without increased adipogenesis. Co-culture studies indicated that PPARgamma-activated adipocytes broadly suppress induction of inflammatory cytokines and C-X-C family chemokines in macrophages. Collectively, these data describe an "adipocentric" model in which adipose activation of PPARgamma is sufficient for complete insulin sensitization and suggest a specific application for fat selective PPARgamma modulators in diabetic therapy.
Assuntos
Adipócitos Brancos/metabolismo , Insulina/metabolismo , PPAR gama/metabolismo , Células 3T3-L1 , Adipócitos Brancos/efeitos dos fármacos , Animais , Linhagem Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Expressão Gênica , Humanos , Hipoglicemiantes/farmacologia , Mediadores da Inflamação/metabolismo , Insulina/sangue , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , PPAR gama/agonistas , PPAR gama/genética , Pioglitazona , Ratos , Ratos Zucker , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Tiazolidinedionas/farmacologiaRESUMO
The fat-muscle communication regulates metabolism and involves circulating signals like adiponectin. Modulation of this cross-talk could benefit muscle bioenergetics and exercise tolerance in conditions like obesity. Chronic daily intake of exogenous glucocorticoids produces or exacerbates metabolic stress, often leading to obesity. In stark contrast to the daily intake, we discovered that intermittent pulses of glucocorticoids improve dystrophic muscle metabolism. However, the underlying mechanisms, particularly in the context of obesity, are still largely unknown. Here we report that in mice with diet-induced obesity, intermittent once-weekly prednisone increased total and high-molecular weight adiponectin levels and improved exercise tolerance and energy expenditure. These effects were dependent upon adiponectin, as shown by genetic ablation of the adipokine. Upregulation of Adipoq occurred through the glucocorticoid receptor (GR), as this effect was blocked by inducible GR ablation in adipocytes. The treatment increased the muscle metabolic response of adiponectin through the CAMKK2-AMPK cascade. Our study demonstrates that intermittent glucocorticoids produce healthful metabolic remodeling in diet-induced obesity.
Assuntos
Adiponectina , Tolerância ao Exercício , Adipócitos/metabolismo , Adiponectina/genética , Animais , Camundongos , Obesidade/metabolismo , Prednisona/farmacologiaRESUMO
Obesity and the related disorders of dyslipidemia and diabetes (components of syndrome X) have become global health epidemics. Over the past decade, the elucidation of key regulators of energy balance and insulin signaling have revolutionized our understanding of fat and sugar metabolism and their intimate link. The three 'lipid-sensing' peroxisome proliferator-activated receptors (PPAR-alpha, PPAR-gamma and PPAR-delta) exemplify this connection, regulating diverse aspects of lipid and glucose homeostasis, and serving as bona fide therapeutic targets. With molecular underpinnings now in place, new pharmacologic approaches to metabolic disease and new questions are emerging.
Assuntos
Obesidade/fisiopatologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Adipócitos/fisiologia , Apetite/fisiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Metabolismo Energético/fisiologia , Glucose/fisiologia , Homeostase/fisiologia , Humanos , Lipídeos/fisiologia , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Activation of the nuclear hormone receptor peroxisome proliferator-activated receptor delta (PPARdelta) has been shown to improve insulin resistance, adiposity, and plasma HDL levels. However, its antiatherogenic role remains controversial. Here we report atheroprotective effects of PPARdelta activation in a model of angiotensin II (AngII)-accelerated atherosclerosis, characterized by increased vascular inflammation related to repression of an antiinflammatory corepressor, B cell lymphoma-6 (Bcl-6), and the regulators of G protein-coupled signaling (RGS) proteins RGS4 and RGS5. In this model, administration of the PPARdelta agonist GW0742 (1 or 10 mg/kg) substantially attenuated AngII-accelerated atherosclerosis without altering blood pressure and increased vascular expression of Bcl-6, RGS4, and RGS5, which was associated with suppression of inflammatory and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in AngII-treated macrophages: PPARdelta activation increased both total and free Bcl-6 levels and inhibited AngII activation of MAP kinases, p38, and ERK1/2. These studies uncover crucial proinflammatory mechanisms of AngII and highlight actions of PPARdelta activation to inhibit AngII signaling, which is atheroprotective.
Assuntos
Angiotensina II/farmacologia , Aterosclerose/metabolismo , PPAR delta/metabolismo , Adipocinas/sangue , Animais , Aterosclerose/genética , Aterosclerose/patologia , Movimento Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipercolesterolemia/sangue , Hipercolesterolemia/patologia , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Ligantes , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , PPAR delta/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiazóis/sangue , Tiazóis/farmacologia , Transcrição Gênica/genéticaRESUMO
Lipid homeostasis and inflammation are key determinants in atherogenesis, exemplified by the requirement of lipid-laden, foam cell macrophages for atherosclerotic lesion formation. Although the nuclear receptor PPARdelta has been implicated in both systemic lipid metabolism and macrophage inflammation, its role as a therapeutic target in vascular disease is unclear. We show here that orally active PPARdelta agonists significantly reduce atherosclerosis in apoE(-/-) mice. Metabolic and gene expression studies reveal that PPARdelta attenuates lesion progression through its HDL-raising effect and anti-inflammatory activity within the vessel wall, where it suppresses chemoattractant signaling by down-regulation of chemokines. Activation of PPARdelta also induces the expression of regulator of G protein signaling (RGS) genes, which are implicated in blocking the signal transduction of chemokine receptors. Consistent with this, PPARdelta ligands repress monocyte transmigration and macrophage inflammatory responses elicited by atherogenic cytokines. These results reveal that PPARdelta antagonizes multiple proinflammatory pathways and suggest PPARdelta-selective drugs as candidate therapeutics for atherosclerosis.
Assuntos
Aterosclerose/metabolismo , PPAR delta/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Linhagem Celular , Quimiocinas/metabolismo , HDL-Colesterol/sangue , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , PPAR delta/genética , Transdução de SinaisRESUMO
The nuclear receptor corepressor, silencing mediator of retinoid and thyroid hormone receptors (SMRT), is recruited by a plethora of transcription factors to mediate lineage and signal-dependent transcriptional repression. We generated a knockin mutation in the receptor interaction domain (RID) of SMRT (SMRT(mRID)) that solely disrupts its interaction with nuclear hormone receptors (NHRs). SMRT(mRID) mice are viable and exhibit no gross developmental abnormalities, demonstrating that the reported lethality of SMRT knockouts is determined by non-NHR transcription factors. However, SMRT(mRID) mice exhibit widespread metabolic defects including reduced respiration, altered insulin sensitivity, and 70% increased adiposity. The latter phenotype is illustrated by the observation that SMRT(mRID)-derived MEFs display a dramatically increased adipogenic capacity and accelerated differentiation rate. Collectively, our results demonstrate that SMRT-RID-dependent repression is a key determinant of the adipogenic set point as well as an integrator of glucose metabolism and whole-body metabolic homeostasis.