Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(14): 6202-6216, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38385171

RESUMO

Ruthenium(II) complexes containing diimine ligands have contributed to the development of agents for photoactivated chemotherapy. Several approaches have been used to obtain photolabile Ru(II) complexes. The two most explored have been the use of monodentate ligands and the incorporation of steric effects between the bidentate ligands and the Ru(II). However, the introduction of electronic effects in the ligands has been less explored. Herein, we report a systematic experimental, theoretical, and photocytotoxicity study of a novel series of Ru(II) complexes Ru1-Ru5 of general formula [Ru(phen)2(N∧N')]2+, where N∧N' are different minimal strained ligands based on the 1-aryl-4-benzothiazolyl-1,2,3-triazole (BTAT) scaffold, being CH3 (Ru1), F (Ru2), CF3 (Ru3), NO2 (Ru4), and N(CH3)2 (Ru5) substituents in the R4 of the phenyl ring. The complexes are stable in solution in the dark, but upon irradiation in water with blue light (λex = 465 nm, 4 mW/cm2) photoejection of the ligand BTAT was observed by HPLC-MS spectrometry and UV-vis spectroscopy, with t1/2 ranging from 4.5 to 14.15 min depending of the electronic properties of the corresponding BTAT, being Ru4 the less photolabile (the one containing the more electron withdrawing substituent, NO2). The properties of the ground state singlet and excited state triplet of Ru1-Ru5 have been explored using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. A mechanism for the photoejection of the BTAT ligand from the Ru complexes, in H2O, is proposed. Phototoxicity studies in A375 and HeLa human cancer cell lines showed that the new Ru BTAT complexes were strongly phototoxic. An enhancement of the emission intensity of HeLa cells treated with Ru5 was observed in response to increasing doses of light due to the photoejection of the BTAT ligand. These studies suggest that BTAT could serve as a photocleavable protecting group for the cytotoxic bis-aqua ruthenium warhead [Ru(phen)2(OH2)2]2+.


Assuntos
Neoplasias , Rutênio , Humanos , Quelantes , Rutênio/farmacologia , Rutênio/química , Ligantes , Células HeLa , Dióxido de Nitrogênio
2.
Chembiochem ; 24(6): e202200624, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36598366

RESUMO

Guanine quadruplexes (G4s) are nucleic acid structures exhibiting a complex structural behavior and exerting crucial biological functions in both cells and viruses. The specific interactions of peptides with G4s, as well as an understanding of the factors driving the specific recognition are important for the rational design of both therapeutic and diagnostic agents. In this review, we examine the most important studies dealing with the interactions between G4s and peptides, highlighting the strengths and limitations of current analytic approaches. We also show how the combined use of high-level molecular simulation techniques and experimental spectroscopy is the best avenue to design specifically tuned and selective peptides, thus leading to the control of important biological functions.


Assuntos
Quadruplex G , Peptídeos
3.
Planta ; 259(1): 1, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966555

RESUMO

MAIN CONCLUSION: SMAX/SMXL family genes were successfully identified and characterized in the chickpea and lentil and gene expression data revealed several genes associated with the modulation of plant branching and powerful targets for use in transgenesis and genome editing. Strigolactones (SL) play essential roles in plant growth, rooting, development, and branching, and are associated with plant resilience to abiotic and biotic stress conditions. Likewise, karrikins (KAR) are "plant smoke-derived molecules" that act in a hormonal signaling pathway similar to SL playing an important role in seed germination and hairy root elongation. The SMAX/SMXL family genes are part of these two signaling pathways, in addition to some of these members acting in a still little known SL- and KAR-independent signaling pathway. To date, the identification and functional characterization of the SMAX/SMXL family genes has not been performed in the chickpea and lentil. In this study, nine SMAX/SMXL genes were systematically identified and characterized in the chickpea and lentil, and their expression profiles were explored under different unstressless or different stress conditions. After a comprehensive in silico characterization of the genes, promoters, proteins, and protein-protein interaction network, the expression profile for each gene was determined using a meta-analysis from the RNAseq datasets and complemented with real-time PCR analysis. The expression profiles of the SMAX/SMXL family genes were very dynamic in different chickpea and lentil organs, with some genes assuming a tissue-specific expression pattern. In addition, these genes were significantly modulated by different stress conditions, indicating that SMAX/SMXL genes, although working in three distinct signaling pathways, can act to modulate plant resilience. Most CaSMAX/SMXL and partner genes such as CaTiE1 and CaLAP1, have a positive correlation with the plant branching level, while most LcSMAX/SMXL genes were less correlated with the plant branching level. The SMXL6, SMXL7, SMXL8, TiE1, LAP1, BES1, and BRC1 genes were highlighted as powerful targets for use in transgenesis and genome editing aiming to develop chickpea and lentil cultivars with improved architecture. Therefore, this study presented a detailed characterization of the SMAX/SMXL genes in the chickpea and lentil, and provided new insights for further studies focused on each SMAX/SMXL gene.


Assuntos
Cicer , Lens (Planta) , Lens (Planta)/genética , Cicer/genética , Biotecnologia , Edição de Genes , Desenvolvimento Vegetal
4.
Chemistry ; 29(49): e202301517, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204268

RESUMO

Sub-nanometer metal clusters have special physical and chemical properties, significantly different from those of nanoparticles. However, there is a major concern about their thermal stability and susceptibility to oxidation. In situ X-ray Absorption spectroscopy and Near Ambient Pressure X-ray Photoelectron spectroscopy results reveal that supported Cu5 clusters are resistant to irreversible oxidation at least up to 773 K, even in the presence of 0.15 mbar of oxygen. These experimental findings can be formally described by a theoretical model which combines dispersion-corrected DFT and first principles thermochemistry revealing that most of the adsorbed O2 molecules are transformed into superoxo and peroxo species by an interplay of collective charge transfer within the network of Cu atoms and large amplitude "breathing" motions. A chemical phase diagram for Cu oxidation states of the Cu5 -oxygen system is presented, clearly different from the already known bulk and nano-structured chemistry of Cu.

5.
J Phys Chem A ; 127(44): 9283-9290, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37906682

RESUMO

The chemical shift (CS) values obtained by 1H NMR spectroscopy for the hydrogen atoms of a tetradentate N2O2-substituted Salphen ligand (H2L1) are differently shifted in its complexes of nickel(II), palladium(II), platinum(II), and zinc(II), all bearing the same charge on the metal ions. To rationalize the observed trends, DFT calculations have been performed in the implicit d6-DMSO solvent in terms of the electronic effects induced by the metal ion and of the nature and strength of the metal-N and metal-O bonds. Overall, the results obtained point out that, in the complexes involving group 10 elements, the CS values show the greater shift when considering the two hydrogen atoms at a shorter distance from the coordinated metal center and follow the decreasing metal charge in the order Ni > Pd > Pt. This trend suggests a more covalent character of the ligand-metal bonds with the increase of the metal atomic number. Furthermore, a slightly poorer agreement between experimental and calculated data is observed in the presence of the nickel(II) ion. Such discrepancy is explained by the formation of stacked oligomers, aimed at minimizing the repulsive interactions with the polar DMSO solvent.

6.
Ecotoxicol Environ Saf ; 264: 115470, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716075

RESUMO

The present work analyzes the complex formation ability towards Pb2+ and Cd2+ of a series of kojic acid derivatives that join the chelating properties of the pyrone molecules and those of polyamines, with the aim of evaluating how the different effects of oxygen and nitrogen coordinating groups act on the stability of metal complexes. Experimental research is carried out using potentiometric and spectrophotometric techniques supported by 1H and 13C NMR spectroscopy and DFT calculations. Actually, a different coordination mechanism toward Pb2+ and Cd2+ was proved: in the case of Pb2+, coordination takes place exclusively via the oxygen atoms, while the contribute of the nitrogen atoms appears relevant in the case of Cd2+. Lead complexes of all the studied ligands are characterized by significantly stronger stability than those of cadmium. Finally, on the basis of the measured complex formation stabilities, some of the proposed molecules seems promising effective ligands for lead and cadmium ion decorporation from polluted soils or waste waters.


Assuntos
Cádmio , Chumbo , Ligantes , Pironas , Nitrogênio , Oxigênio
7.
Chemistry ; 28(57): e202201824, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35791808

RESUMO

We investigated the mechanisms leading to the specific recognition of Guanine Guadruplex (G4) by DARPins peptides, which can lead to the design of G4 s specific sensors. To this end we carried out all-atom molecular dynamic simulations to unravel the interactions between specific nucleic acids, including human-telomeric (h-telo), Bcl-2, and c-Myc, with different peptides, forming a DARPin/G4 complex. By comparing the sequences of DARPin with that of a peptide known for its high affinity for c-Myc, we show that the recognition cannot be ascribed to sequence similarity but, instead, depends on the complementarity between the three-dimensional arrangement of the molecular fragments involved: the α-helix/loops domain of DARPin and the G4 backbone. Our results reveal that DARPins tertiary structure presents a charged hollow region in which G4 can be hosted, thus the more complementary the structural shapes, the more stable the interaction.


Assuntos
Quadruplex G , Ácidos Nucleicos , Sítios de Ligação de Anticorpos , Proteínas de Repetição de Anquirina Projetadas , Epitopos , Guanina/química , Humanos , Peptídeos/química , Proteínas Proto-Oncogênicas c-bcl-2
8.
J Chem Inf Model ; 62(12): 3096-3106, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35675714

RESUMO

The stimulator of interferon genes (STING) protein is a cornerstone of the human immune response. Its activation by cGAMP in the presence of cytosolic DNA stimulates the production of type I interferons and inflammatory cytokines. In the human population, several STING variants exist and exhibit dramatic differences in their activity, impacting the efficiency of the host defense against infections. Understanding the molecular mechanisms of these variants opens perspectives for personalized medicine treatments against diseases such as viral infections, cancers, or autoinflammatory diseases. Through microsecond-scale molecular modeling simulations, contact analyses, and machine learning techniques, we reveal the dynamic behavior of four STING variants (wild type, G230A, R293Q, and G230A/R293Q) and rationalize the variability of efficiency observed experimentally. Our results show that the decrease in STING activity is linked to a stiffening of key structural elements of the binding cavity together with changes in the interaction patterns within the protein.


Assuntos
Imunidade Inata , Proteínas de Membrana , Humanos , Interferons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
9.
Molecules ; 27(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35630732

RESUMO

DNA integrity is an important factor that assures genome stability and, more generally, the viability of cells and organisms. In the presence of DNA damage, the normal cell cycle is perturbed when cells activate their repair processes. Although efficient, the repair system is not always able to ensure complete restoration of gene integrity. In these cases, mutations not only may occur, but the accumulation of lesions can either lead to carcinogenesis or reach a threshold that induces apoptosis and programmed cell death. Among the different types of DNA lesions, strand breaks produced by ionizing radiation are the most toxic due to the inherent difficultly of repair, which may lead to genomic instability. In this article we show, by using classical molecular simulation techniques, that compared to canonical double-helical B-DNA, guanine-quadruplex (G4) arrangements show remarkable structural stability, even in the presence of two strand breaks. Since G4-DNA is recognized for its regulatory roles in cell senescence and gene expression, including oncogenes, this stability may be related to an evolutionary cellular response aimed at minimizing the effects of ionizing radiation.


Assuntos
Reparo do DNA , Quadruplex G , DNA/efeitos da radiação , Dano ao DNA , Instabilidade Genômica , Humanos
10.
Chemistry ; 27(34): 8865-8874, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33871121

RESUMO

Human telomeric DNA, in G-quadruplex (G4) conformation, is characterized by a remarkable structural stability that confers it the capacity to resist to oxidative stress producing one or even clustered 8-oxoguanine (8oxoG) lesions. We present a combined experimental/computational investigation, by using circular dichroism in aqueous solutions, cellular immunofluorescence assays and molecular dynamics simulations, that identifies the crucial role of the stability of G4s to oxidative lesions, related also to their biological role as inhibitors of telomerase, an enzyme overexpressed in most cancers associated to oxidative stress.


Assuntos
Quadruplex G , Telomerase , Dicroísmo Circular , DNA/metabolismo , Humanos , Conformação de Ácido Nucleico , Estresse Oxidativo , Telomerase/metabolismo , Telômero/metabolismo
11.
Chemistry ; 27(57): 14322-14334, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34310783

RESUMO

In recent years, the reactivity of gold complexes was shown to extend well beyond π-activation and to hold promises to achieve selective cross-couplings in several C-C and C-E (E=heteroatom) bond forming reactions. Here, with the aim of exploiting new organometallic species for cross-coupling reactions, we report on the Au(III)-mediated C(sp2 )-C(sp) occurring upon reaction of the cyclometalated complex [Au(CCH2 N)Cl2 ] (1, CCH2 N=2-benzylpyridine) with AgPhCC. The reaction progress has been monitored by NMR spectroscopy, demonstrating the involvement of a number of key intermediates, whose structures have been unambiguously ascertained through 1D and 2D NMR analyses (1 H, 13 C, 1 H-1 H COSY, 1 H-13 C HSQC and 1 H-13 C HMBC) as well as by HR-ESI-MS and X-ray diffraction studies. Furthermore, crystallographic studies have serendipitously resulted in the authentication of zwitterionic Au(I) complexes as side-products arising from cyclization of the coupling product in the coordination sphere of gold. The experimental work has been paralleled and complemented by DFT calculations of the reaction profiles, providing valuable insight into the structure and energetics of the key intermediates and transition states, as well as on the coordination sphere of gold along the whole process. Of note, the broader scope of the cross-coupling at the Au(III) CCH2 N centre has also been demonstrated studying the reaction of 1 with C(sp2 )-based nucleophiles, namely vinyl and heteroaryl tin and zinc reagents. These reactions stand as rare examples of C(sp2 )-C(sp2 ) cross-couplings at Au(III).


Assuntos
Ouro , Zinco
12.
Inorg Chem ; 60(4): 2178-2187, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33502194

RESUMO

The specific recognition of AT-rich DNA sequences opens up the door to promising diagnostic and/or therapeutic strategies against gene-related diseases. Here, we demonstrate that amphiphilic PtII complexes of the type [Pt(dmba)(N∧N)]NO3 (dmba = N,N-dimethylbenzylamine-κN, κC; N∧N = dpq (3), dppz (4), and dppn (5)) recognize AT-rich oligonucleotides over other types of DNA, RNA, and model proteins. The crystal structure of 4 shows the presence of significant π-stacking interactions and a distorted coordination sphere of the d8 PtII atom. Complex 5, containing the largest π-conjugated ligand, forms supramolecular assemblies at high concentrations under aqueous environment. However, its aggregation can be promoted in the presence of DNA at concentrations as low as 10 µM in a process that "turns on" its excimer emission around 600 nm. Viscometry, gel electrophoresis, and theoretical calculations demonstrate that 5 binds to minor groove when self-assembled, while the monomers of 3 and 4 intercalate into the DNA. The complexes also inhibit cancer cell growth with low-micromolar IC50 values in 2D tissue culture and suppress tumor growth in 3D tumor spheroids with a multicellular resistance (MCR) index comparable to that of cisplatin.


Assuntos
Complexos de Coordenação/química , DNA/química , Compostos Organoplatínicos/química , Células A549 , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Substâncias Intercalantes/química , Ligantes , Estrutura Molecular , Análise Espectral/métodos , Estereoisomerismo
13.
Org Biomol Chem ; 19(29): 6501-6512, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254099

RESUMO

Indomethacin is a potent non-steroidal anti-inflammatory drug (NSAID) with a strong selective inhibitor activity towards cyclooxygenase-2 (COX-2), an enzyme that is highly overexpressed in various tumour cells, being involved in tumourigenesis. Concomitantly, porphyrins have gained much attention as promising photosensitizers (PSs) for the non-invasive photodynamic therapy (PDT) of cancer. Herein, we report the design, and determine the singlet oxygen generation capacity and in vitro cellular toxicity of porphyrin- and chlorin-indomethacin conjugates (P2-Ind and C2-Ind). Both the conjugates were obtained in high yields and were characterized by 1H, 19F and 13C NMR as well as by high resolution mass spectrometry. The singlet oxygen generation properties were assessed by the 1,3-diphenylisobenzofuran singlet oxygen trap method, which showed that C2 and C2-Ind are the best singlet oxygen photosensitizers. In addition, it was found that the presence of indomethacin did not influence the singlet oxygen generation of porphyrin or chlorin. Cytotoxicity studies of the conjugate in human HEp2 cells revealed that the porphyrin- and chlorin-indomethacin conjugates have similar dark cytotoxicities, while chlorin C2 was shown to be the most phototoxic. Despite having lower cellular uptake than C2-Ind after 24 hours, chlorin C2 had a broad localization in HEp2 cells while the chlorin-indomethacin conjugate C2-Ind could be detected in the form of small aggregates. DFT calculations were performed to shed light on the reaction energy involved in the formation of the indomethacin conjugates and to compare the relative stability of selected isomers in solution. Moreover, the calculated energy of their first excited triplet state structures confirmed their use as suitable photosensitizers to generate singlet oxygen for PDT.


Assuntos
Fotoquimioterapia
14.
Phys Chem Chem Phys ; 23(40): 22957-22971, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34636373

RESUMO

The identification of chemical compounds able to bind specific sites of the human/viral proteins involved in the SARS-CoV-2 infection cycle is a prerequisite to design effective antiviral drugs. Here we conduct a molecular dynamics study with the aim to assess the interactions of ivermectin, an antiparasitic drug with broad-spectrum antiviral activity, with the human Angiotensin-Converting Enzyme 2 (ACE2), the viral 3CLpro and PLpro proteases, and the viral SARS Unique Domain (SUD). The drug/target interactions have been characterized in silico by describing the nature of the non-covalent interactions found and by measuring the extent of their time duration along the MD simulation. Results reveal that the ACE2 protein and the ACE2/RBD aggregates form the most persistent interactions with ivermectin, while the binding with the remaining viral proteins is more limited and unspecific.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/metabolismo , Proteases 3C de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Ivermectina/metabolismo , Enzima de Conversão de Angiotensina 2/química , Antivirais/química , Sítios de Ligação , Proteases 3C de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/química , Quadruplex G , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ivermectina/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , RNA/genética , RNA/metabolismo , SARS-CoV-2
15.
Molecules ; 26(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299583

RESUMO

Background: G-quadruplex (G4) forming sequences are recurrent in telomeres and promoter regions of several protooncogenes. In normal cells, the transient arrangements of DNA in G-tetrads may regulate replication, transcription, and translation processes. Tumors are characterized by uncontrolled cell growth and tissue invasiveness and some of them are possibly mediated by gene expression involving G-quadruplexes. The stabilization of G-quadruplex sequences with small molecules is considered a promising strategy in anticancer targeted therapy. Methods: Molecular virtual screening allowed us identifying novel symmetric bifunctionalized naphtho[1,2-b:8,7-b']dithiophene ligands as interesting candidates targeting h-Telo and c-MYC G-quadruplexes. A set of unexplored naphtho-dithiophene derivatives has been synthesized and biologically tested through in vitro antiproliferative assays and spectroscopic experiments in solution. Results: The analysis of biological and spectroscopic data highlighted noteworthy cytotoxic effects on HeLa cancer cell line (GI50 in the low µM range), but weak interactions with G-quadruplex c-MYC promoter. Conclusions: The new series of naphtho[1,2-b:8,7-b']dithiophene derivatives, bearing the pharmacophoric assumptions necessary to stabilize G-quadruplexes, have been designed and successfully synthesized. The interesting antiproliferative results supported by computer aided rational approaches suggest that these studies are a significant starting point for a lead optimization process and the isolation of a more efficacious set of G-quadruplexes stabilizers.


Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Citotoxinas , Quadruplex G/efeitos dos fármacos , Naftóis , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Células HeLa , Humanos , Naftóis/síntese química , Naftóis/química , Naftóis/farmacologia , Proteínas Proto-Oncogênicas c-myc/biossíntese
16.
J Proteome Res ; 19(11): 4291-4315, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33119313

RESUMO

The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of key viral processes. In this Review, we focus on how in silico studies have contributed to the understanding of the SARS-CoV-2 infection mechanism and the proposal of novel and original agents to inhibit the viral key functioning. This Review deals with the SARS-CoV-2 spike protein, including the mode of action that this structural protein uses to entry human cells, as well as with nonstructural viral proteins, focusing the attention on the most studied proteases and also proposing alternative mechanisms involving some of its domains, such as the SARS unique domain. We demonstrate that molecular modeling and simulation represent an effective approach to gather information on key biological processes and thus guide rational molecular design strategies.


Assuntos
Antivirais , Infecções por Coronavirus , Desenho de Fármacos , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral , Glicoproteína da Espícula de Coronavírus , Betacoronavirus , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Humanos , Simulação de Dinâmica Molecular , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Internalização do Vírus
17.
Chembiochem ; 21(21): 3071-3076, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32511840

RESUMO

To gain more insight into the factors controlling efficient cysteine arylation by cyclometallated AuIII complexes, the reaction between selected gold compounds and different peptides was investigated by high-resolution liquid chromatography electrospray ionization mass spectrometry (HR-LC-ESI-MS). The deduced mechanisms of C-S cross-coupling, also supported by density functional theory (DFT) and quantum mechanics/molecular mechanics (QM/MM) calculations, evidenced the key role of secondary peptidic gold binding sites in favouring the process of reductive elimination.


Assuntos
Cisteína/síntese química , Ouro/química , Compostos Organoáuricos/química , Peptídeos/química , Cisteína/química , Teoria da Densidade Funcional , Modelos Moleculares , Estrutura Molecular , Compostos Organoáuricos/síntese química
18.
J Biol Inorg Chem ; 25(8): 1067-1083, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32951085

RESUMO

The synthesis and characterization of two half-sandwich complexes of Ru(II) and Ir(III) with thiabendazole as ancillary ligand and their DNA binding ability were investigated using experimental and computational methods. 1H NMR and acid-base studies have shown that aquo-complexes are the reactive species. Kinetic studies show that both complexes bind covalently to DNA through the metal site and non covalently through the ancillary ligand. Thermal stability studies, viscosity, circular dichroism measurements and quantum chemical calculations have shown that the covalent binding causes breaking of the H-bonding between base pairs, bringing about DNA denaturation and compaction. Additionally, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations shed light into the binding features of the Ru(II) and Ir(III) complexes and their respective enantiomers toward double-helical DNA, highlighting the important role played by the NˆN ancillary ligand once the complexes are covalently linked to DNA. Moreover, metal quantification in the nucleus of SW480 colon adenocarcinoma cells were carried out by inductively coupled plasma-mass spectrometry (ICP-MS), both complexes are more internalized than cisplatin after 4 h of exposition. However, in spite of the dramatic changes in the helicity of the DNA secondary structure induced by these complexes and their nuclear localization, antiproliferative studies have revealed that both, Ru(II) and Ir(III) complexes, cannot be considered cytotoxic. This unexpected behavior can be justified by the fast formation of aquo-complexes, which may react with components of the cell culture medium or the cytoplasm compartment in such a way that they may become deactivated before reaching DNA.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA/química , Irídio/química , Simulação de Dinâmica Molecular , Rutênio/química , Tiabendazol/química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Conformação de Ácido Nucleico
19.
Chemistry ; 26(19): 4226-4231, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31994237

RESUMO

With the aim of exploiting new organometallic species for cross-coupling reactions, we report here on the AuIII -mediated Caryl -P bond formation occurring upon reaction of C^N cyclometalated AuIII complexes with phosphines. The [Au(C^N)Cl2 ] complex 1 featuring the bidentate 2-benzoylpyridine (CCO N) scaffold was found to react with PTA (1,3,5-triaza-7-phosphaadamantane) under mild conditions, including in water, to afford the corresponding phosphonium 5 through C-P reductive elimination. A mechanism is proposed for the title reaction based on in situ 31 P{1 H} NMR and HR-ESI-MS analyses combined with DFT calculations. The C-P coupling has been generalized to other C^N cyclometalated AuIII complexes and other tertiary phosphines. Overall, this work provides new insights into the reactivity of cyclometalated AuIII compounds and establishes initial structure-activity relationships to develop AuIII -mediated C-P cross-coupling reactions.

20.
Chemistry ; 25(32): 7628-7634, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30990916

RESUMO

With the aim of exploiting the use of organometallic species for the efficient modification of proteins through C-atom transfer, the gold-mediated cysteine arylation through a reductive elimination process occurring from the reaction of cyclometalated AuIII C^N complexes with a zinc finger peptide (Cys2 His2 type) is here reported. Among the four selected AuIII cyclometalated compounds, the [Au(CCO N)Cl2 ] complex featuring the 2-benzoylpyridine (CCO N) scaffold was identified as the most prone to reductive elimination and Cys arylation in buffered aqueous solution (pH 7.4) at 37 °C by high-resolution LC electrospray ionization mass spectrometry. DFT and quantum mechanics/molecular mechanics (QM/MM) studies permitted to propose a mechanism for the title reaction that is in line with the experimental results. Overall, the results provide new insights into the reactivity of cytotoxic organogold compounds with biologically important zinc finger domains and identify initial structure-activity relationships to enable AuIII -catalyzed reductive elimination in aqueous media.


Assuntos
Complexos de Coordenação/química , Cisteína/química , Ouro/química , Dedos de Zinco , Modelos Moleculares , Domínios Proteicos , Teoria Quântica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa