Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(6): 546-559, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38649545

RESUMO

Wild bees are crucial pollinators of flowering plants and concerns are rising about their decline associated with pesticide use. Interspecific variation in wild bee response to pesticide exposure is expected to be related to variation in their morphology, physiology, and ecology, though there are still important knowledge gaps in its understanding. Pesticide risk assessments have largely focussed on the Western honey bee sensitivity considering it protective enough for wild bees. Recently, guidelines for Bombus terrestris and Osmia bicornis testing have been developed but are not yet implemented at a global scale in pesticide risk assessments. Here, we developed and tested a new simplified method of pesticide exposure on wild bee species collected from the field in Belgium. Enough specimens of nine species survived in a laboratory setting and were exposed to oral and topical acute doses of a sulfoximine insecticide. Our results confirm significant variability among wild bee species. We show that Osmia cornuta is more sensitive to sulfoxaflor than B. terrestris, whereas Bombus hypnorum is less sensitive. We propose hypotheses on the mechanisms explaining interspecific variations in sensitivity to pesticides. Future pesticide risk assessments of wild bees will require further refinement of protocols for their controlled housing and exposure.


Assuntos
Inseticidas , Piridinas , Compostos de Enxofre , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Inseticidas/toxicidade , Piridinas/toxicidade , Compostos de Enxofre/toxicidade , Especificidade da Espécie , Bélgica , Medição de Risco
2.
Ecotoxicol Environ Saf ; 181: 518-524, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31234066

RESUMO

The use of pesticides in agroecosystems can have negative effects on earthworms, which play key roles in soil functioning such as organic matter decomposition. The aim of this study was to assess the effects of two fungicides (Cuprafor micro®, composed of copper oxychloride, and Swing Gold®, composed of epoxiconazole (EPX) and dimoxystrobin (DMX)) on earthworm reproduction by exposing adults and cocoons. First, adult Aporrectodea caliginosa individuals were exposed for 28 days to 3.33, 10 and 30 times the recommended dose (RD) of Cuprafor micro® corresponding to 25.8, 77.5 and 232.5 mg kg-1 dry soil of copper, respectively, and 0.33, 1 and 3 times the RD of Swing Gold® (corresponding to 5.2 × 10-2 mg DMX kg-1 + 1.94 × 10-2 mg EPX kg-1, 1.55 × 10-1 mg DMX kg-1 + 5.81 × 10-2 mg EPX kg-1 and 4.62 × 10-1 mg DMX kg-1 + 1.74 × 10-1 mg EPX kg-1 respectively), in addition to a control soil with no fungicide treatment. Cocoon variables (production, weight, hatching success, hatching time) were monitored. Second, "naïve" cocoons produced by uncontaminated earthworms were exposed to soils contaminated by the same concentrations of the two fungicides, and we assessed hatching success and hatching time. In the first experiment, cocoon production was halved at the highest copper concentration (232.5 mg Cu kg-1 of dry soil) as compared to the control. Cocoons took 5 more days to hatch, and the hatching success decreased by 35% as compared to the control. In the Swing Gold® treatments, cocoon production was reduced by 63% at 3 times the RD, and the hatching success significantly decreased by 16% at the RD. In the second experiment, only the hatching success of cocoons was impacted by Swing Gold® at 3 times the RD (30% less hatching). It is concluded that the cocoon stock in the soil is crucial for the renewal of populations in the field. The most sensitive endpoint was the hatching success of the cocoons produced by exposed adults. This endpoint and the effects observed on the "naïve" cocoons could be taken into account in pesticide risk assessment.


Assuntos
Biomarcadores Ambientais/fisiologia , Fungicidas Industriais/toxicidade , Oligoquetos/fisiologia , Poluentes do Solo/toxicidade , Animais , Cobre/toxicidade , Compostos de Epóxi/toxicidade , Oligoquetos/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Medição de Risco/métodos , Solo/química , Poluentes do Solo/análise , Triazóis/toxicidade
3.
Sci Total Environ ; 912: 169494, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142004

RESUMO

Floral resource loss and pesticide exposure are major threats to bees in intensively managed agroecosystems, but interactions among these drivers remain poorly understood. Altered composition and lowered diversity of pollen nutrition may reinforce negative pesticide impacts on bees. Here we investigated the development and survival of the solitary bee Osmia bicornis provisioned with three different pollen types, as well as a mixture of these types representing a higher pollen diversity. We exposed bees of each nutritional treatment to five pesticides at different concentrations in the laboratory. Two field-realistic concentrations of three nicotinic acetylcholine receptor (nAChR) modulating insecticides (thiacloprid, sulfoxaflor and flupyradifurone), as well as of two fungicides (azoxystrobin and tebuconazole) were examined. We further measured the expression of two detoxification genes (CYP9BU1, CYP9BU2) under exposure to thiacloprid across different nutrition treatments as a potential mechanistic pathway driving pesticide-nutrition interactions. We found that more diverse pollen nutrition reduced development time, enhanced pollen efficacy (cocoon weight divided by consumed pollen weight) and pollen consumption, and increased weight of O. bicornis after larval development (cocoon weight). Contrary to fungicides, high field-realistic concentrations of all three insecticides negatively affected O. bicornis by extending development times. Moreover, sulfoxaflor and flupyradifurone also reduced pollen efficacy and cocoon weight, and sulfoxaflor reduced pollen consumption and increased mortality. The expression of detoxification genes differed across pollen nutrition types, but was not enhanced after exposure to thiacloprid. Our findings highlight that lowered diversity of pollen nutrition and high field-realistic exposure to nAChR modulating insecticides negatively affected the development of O. bicornis, but we found no mitigation of negative pesticide impacts through increased pollen diversity. These results have important implications for risk assessment for bee pollinators, indicating that negative effects of nAChR modulating insecticides to developing solitary bees are currently underestimated.


Assuntos
4-Butirolactona/análogos & derivados , Fungicidas Industriais , Inseticidas , Neonicotinoides , Praguicidas , Piridinas , Compostos de Enxofre , Tiazinas , Abelhas , Animais , Praguicidas/toxicidade , Inseticidas/toxicidade , Fungicidas Industriais/toxicidade , Pólen
4.
R Soc Open Sci ; 8(9): 210818, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34540259

RESUMO

A reduction in floral resource abundance and diversity is generally observed in agro-ecosystems, along with widespread exposure to pesticides. Therefore, a better understanding on how the availability and quality of pollen diets can modulate honeybee sensitivity to pesticides is required. For that purpose, we evaluated the toxicity of acute exposure and chronic exposures to field realistic and higher concentrations of azoxystrobin (fungicide) and sulfoxaflor (insecticide) in honeybees provided with pollen diets of differing qualities (named S and BQ pollens). We found that pollen intake reduced the toxicity of the acute doses of pesticides. Contrary to azoxystrobin, chronic exposures to sulfoxaflor increased by 1.5- to 12-fold bee mortality, which was reduced by pollen intake. Most importantly, the risk of death upon exposure to a high concentration of sulfoxaflor was significantly lower for the S pollen diet when compared with the BQ pollen diet. This reduced pesticide toxicity was associated with a higher gene expression of vitellogenin, a glycoprotein that promotes bee longevity, a faster sulfoxaflor metabolization and a lower concentration of the phytochemical p-coumaric acid, known to upregulate detoxification enzymes. Thus, our study revealed that pollen quality can influence the ability of bees to metabolize pesticides and withstand their detrimental effects, providing another strong argument for the restoration of suitable foraging habitat.

5.
Front Microbiol ; 10: 1535, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333628

RESUMO

Earthworms act synergistically with microorganisms in soils. They are ecosystem engineers involved in soil organic matter degradation and nutrient cycling, leading to the modulation of resource availability for all soil organisms. Using a soil microcosm approach, we aimed to assess the influence of the earthworm Aporrectodea caliginosa on the response of soil microbial activities against two fungicides, i.e., Cuprafor Micro® (copper oxychloride, a metal) and Swing® Gold (epoxiconazole and dimoxystrobin, synthetic organic compounds). The potential nitrification activity (PNA) and soil enzyme activities (glucosidase, phosphatase, arylamidase, and urease) involved in biogeochemical cycling were measured at the end of the incubation period, together with earthworm biomass. Two common indices of the soil biochemistry were used to aggregate the response of the soil microbial functioning: the geometric mean (Gmean) and the Soil Quality Index (SQI). At the end of the experiment, the earthworm biomass was not impacted by the fungicide treatments. Overall, in the earthworm-free soil microcosms, the two fungicides significantly increased several soil enzyme and nitrification activities, leading to a higher GMean index as compared to the non-treated control soils. The microbial activity responses depended on the type of activity (nitrification was the most sensitive one), on the fungicide (Swing® Gold or Cuprafor Micro®), and on the doses. The SQI indices revealed higher effects of both fungicides on the soil microbial activity in the absence of earthworms. The presence of earthworms enhanced all soil microbial activities in both the control and fungicide-contaminated soils. Moreover, the magnitude of the fungicide impact, integrated through the SQI index, was mitigated by the presence of earthworms, conferring a higher stability of microbial functional diversity. Our results highlight the importance of biotic interactions in the response of indicators of soil functioning (i.e., microbial activity) to pesticides.

6.
Sci Rep ; 9(1): 12596, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467366

RESUMO

Pollinators are experiencing declines globally, negatively affecting the reproduction of wild plants and crop production. Well-known drivers of these declines include climatic and nutritional stresses, such as a change of dietary resources due to the degradation of habitat quality. Understanding potential synergies between these two important drivers is needed to improve predictive models of the future effects of climate change on pollinator declines. Here, bumblebee colony bioassays were used to evaluate the interactive effects of heat stress, a reduction of dietary resource quality, and colony size. Using a total of 117 colonies, we applied a fully crossed experiment to test the effect of three dietary quality levels under three levels of heat stress with two colony sizes. Both nutritional and heat stress reduced colony development resulting in a lower investment in offspring production. Small colonies were much more sensitive to heat and nutritional stresses than large ones, possibly because a higher percentage of workers helps maintain social homeostasis. Strikingly, the effects of heat stress were far less pronounced for small colonies fed with suitable diets. Overall, our study suggests that landscape management actions that ensure access to high-quality resources could reduce the impacts of heat stress on bee decline.


Assuntos
Abelhas/fisiologia , Dieta , Resposta ao Choque Térmico , Animais , Conservação dos Recursos Naturais , Estado Nutricional , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa