Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurobiol Dis ; 176: 105942, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473591

RESUMO

Cyclin-dependent kinase 5 (CDK5) is a serine/threonine kinase that has emerged as a key regulator of neurotransmission in complex cognitive processes. Its expression is altered in treated schizophrenia patients, and cannabinoids modulate CDK5 levels in the brain of rodents. However, the role of this kinase, and its interaction with cannabis use in first-episode psychosis (FEP) patients is still not known. Hence, we studied the expression changes of CDK5 and its signaling partner, postsynaptic density protein 95 (PSD95) in olfactory neuroepithelial (ON) cells of FEP patients with (FEP/c) and without (FEP/nc) prior cannabis use, and in a dual-hit mouse model of psychosis. In this model, adolescent mice were exposed to the cannabinoid receptor 1 agonist (CB1R) WIN-55,212-2 (WIN: 1 mg/kg) during 21 days, and to the N-methyl-d-aspartate receptor (NMDAR) blocker phencyclidine (PCP: 10 mg/kg) during 10 days. FEP/c showed less social functioning deficits, lower CDK5 and higher PSD95 levels than FEP/nc. These changes correlated with social skills, but not cognitive deficits. Consistently, exposure of ON cells from FEP/nc patients to WIN in vitro reduced CDK5 levels. Convergent results were obtained in mice, where PCP by itself induced more sociability deficits, and PSD95/CDK5 alterations in the prefrontal cortex and hippocampus than exposure to PCP-WIN. In addition, central blockade of CDK5 activity with roscovitine in PCP-treated mice restored both sociability impairments and PSD95 levels. We provide translational evidence that increased CDK5 could be an early indicator of psychosis associated with social deficits, and that this biomarker is modulated by prior cannabis use.


Assuntos
Canabinoides , Transtornos Psicóticos , Esquizofrenia , Camundongos , Animais , Quinase 5 Dependente de Ciclina/metabolismo , Transtornos Psicóticos/tratamento farmacológico , Fenciclidina/farmacologia , Agonistas de Receptores de Canabinoides , Proteína 4 Homóloga a Disks-Large
2.
Mol Cell Biochem ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37440120

RESUMO

The persistence of fetal cells in the mother (fetal microchimerism (FMc)) has been described in maternal tissues essential to the newborn. FMc is associated with several diseases that start or worsen in pregnancy or postpartum. This exploratory study reports-for the first time-the presence of FMc in the olfactory neuroepithelium (ON) of both healthy and depressed women with male offspring. However, depressed women had fewer microchimeric cells (digital PCR). The existence of FMc in the ON could facilitate mother-child bonding. These findings open new pathways to study FMc in the ON, female depression, and mother-child bonding.

3.
Prog Neurobiol ; 240: 102652, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955325

RESUMO

Psychotic disorders entail intricate conditions marked by disruptions in cognition, perception, emotions, and social behavior. Notably, psychotic patients who use cannabis tend to show less severe deficits in social behaviors, such as the misinterpretation of social cues and the inability to interact with others. However, the biological underpinnings of this epidemiological interaction remain unclear. Here, we used the NMDA receptor blocker phencyclidine (PCP) to induce psychotic-like states and to study the impact of adolescent cannabinoid exposure on social behavior deficits and synaptic transmission changes in hippocampal area CA2, a region known to be active during social interactions. In particular, adolescent mice underwent 7 days of subchronic treatment with the synthetic cannabinoid, WIN 55, 212-2 (WIN) followed by one injection of PCP. Using behavioral, biochemical, and electrophysiological approaches, we showed that PCP persistently reduced sociability, decreased GAD67 expression in the hippocampus, and induced GABAergic deficits in proximal inputs from CA3 and distal inputs from the entorhinal cortex (EC) to CA2. Notably, WIN exposure during adolescence specifically restores adult sociability deficits, the expression changes in GAD67, and the GABAergic impairments in the EC-CA2 circuit, but not in the CA3-CA2 circuit. Using a chemogenetic approach to target EC-CA2 projections, we demonstrated the involvement of this specific circuit on sociability deficits. Indeed, enhancing EC-CA2 transmission was sufficient to induce sociability deficits in vehicle-treated mice, but not in animals treated with WIN during adolescence, suggesting a mechanism by which adolescent cannabinoid exposure rescues sociability deficits caused by enhanced EC-CA2 activity in adult mice.


Assuntos
Canabinoides , Fenciclidina , Transmissão Sináptica , Animais , Fenciclidina/farmacologia , Masculino , Camundongos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Canabinoides/farmacologia , Benzoxazinas/farmacologia , Comportamento Social , Região CA2 Hipocampal/efeitos dos fármacos , Região CA2 Hipocampal/fisiologia , Naftalenos/farmacologia , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem
4.
Mol Neurobiol ; 58(4): 1695-1710, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33237429

RESUMO

Cannabis is the third most commonly used psychoactive substance of abuse, yet it also receives considerable attention as a potential therapeutic drug. Therefore, it is essential to fully understand the actions of cannabis in the human brain. The olfactory neuroepithelium (ON) is a peripheral nervous tissue that represents an interesting surrogate model to study the effects of drugs in the brain, since it is closely related to the central nervous system, and sensory olfactory neurons are continually regenerated from populations of stem/progenitor cells that undergo neurogenesis throughout life. In this study, we used ON cells from chronic cannabis users and healthy control subjects to assess alterations in relevant cellular processes, and to identify changes in functional proteomic pathways due to cannabis consumption. The ON cells from cannabis users exhibited alterations in the expression of proteins that were related to the cytoskeleton, cell proliferation and cell death, as well as, changes in proteins implicated in cancer, gastrointestinal and neurodevelopmental pathologies. Subsequent studies showed cannabis provoked an increase in cell size and morphological alterations evident through ß-Tubulin III staining, as well as, enhanced beta-actin expression and a decrease in the ability of ON cells to undergo cell attachment, suggesting abnormalities of the cytoskeleton and cell adhesion system. Furthermore, these cells proliferated more and underwent less cell death. Our results indicate that cannabis may alter key processes of the developing brain, some of which are similar to those reported in mental disorders like DiGeorge syndrome, schizophrenia and bipolar disorder.


Assuntos
Apoptose , Biomarcadores/metabolismo , Cannabis/efeitos adversos , Citoesqueleto/patologia , Células Neuroepiteliais/patologia , Bulbo Olfatório/patologia , Transtornos Relacionados ao Uso de Substâncias/patologia , Adulto , Atenção , Adesão Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Masculino , Proteoma/metabolismo , Proteômica
5.
J Pers Med ; 11(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668817

RESUMO

A close epidemiological link has been reported between cannabis use and schizophrenia (SCZ). However, biochemical markers in living humans related to the impact of cannabis in this disease are still missing. Olfactory neuroepithelium (ON) cells express neural features and offer a unique advantage to study biomarkers of psychiatric diseases. The aim of our study was to find exclusively deregulated proteins in ON cells of SCZ patients with and without a history of cannabis use. Thus, we compared the proteomic profiles of SCZ non-cannabis users (SCZ/nc) and SCZ cannabis users (SCZ/c) with control subjects non-cannabis users (C/nc) and control cannabis users (C/c). The results revealed that the main cascades affected in SCZ/nc were cell cycle, DNA replication, signal transduction and protein localization. Conversely, cannabis use in SCZ patients induced specific alterations in metabolism of RNA and metabolism of proteins. The levels of targeted proteins in each population were then correlated with cognitive performance and clinical scores. In SCZ/c, the expression levels of 2 proteins involved in the metabolism of RNA (MTREX and ZNF326) correlated with several cognitive markers and clinical signs. Moreover, use duration of cannabis negatively correlated with ZNF326 expression. These findings indicate that RNA-related proteins might be relevant to understand the influence of cannabis use on SCZ.

6.
Schizophr Bull ; 46(6): 1547-1557, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32249318

RESUMO

Schizophrenia (SCZ) has been associated with serotonergic and endocannabinoid systems dysregulation, but difficulty in obtaining in vivo neurological tissue has limited its exploration. We investigated CB1R-5-HT2AR heteromer expression and functionality via intracellular pERK and cAMP quantification in olfactory neuroepithelium (ON) cells of SCZ patients non-cannabis users (SCZ/nc), and evaluated whether cannabis modulated these parameters in patients using cannabis (SCZ/c). Results were compared vs healthy controls non-cannabis users (HC/nc) and healthy controls cannabis users (HC/c). Further, antipsychotic effects on heteromer signaling were tested in vitro in HC/nc and HC/c. Results indicated that heteromer expression was enhanced in both SCZ groups vs HC/nc. Additionally, pooling all 4 groups together, heteromer expression correlated with worse attentional performance and more neurological soft signs (NSS), indicating that these changes may be useful markers for neurocognitive impairment. Remarkably, the previously reported signaling properties of CB1R-5-HT2AR heteromers in ON cells were absent, specifically in SCZ/nc treated with clozapine. These findings were mimicked in cells from HC/nc exposed to clozapine, suggesting a major role of this antipsychotic in altering the quaternary structure of the CB1R-5-HT2AR heteromer in SCZ/nc patients. In contrast, cells from SCZ/c showed enhanced heteromer functionality similar to HC/c. Our data highlight a molecular marker of the interaction between antipsychotic medication and cannabis use in SCZ with relevance for future studies evaluating its association with specific neuropsychiatric alterations.


Assuntos
Antipsicóticos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Uso da Maconha , Células Neuroepiteliais , Neurônios Receptores Olfatórios , Receptor CB1 de Canabinoide , Receptor 5-HT2A de Serotonina , Esquizofrenia/metabolismo , Adulto , Agonistas de Receptores de Canabinoides/sangue , Células Cultivadas , Clozapina/farmacologia , Estudos Transversais , Dronabinol/sangue , Feminino , Humanos , Masculino , Células Neuroepiteliais/efeitos dos fármacos , Células Neuroepiteliais/metabolismo , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/metabolismo , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa