Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Glia ; 62(9): 1392-406, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24796807

RESUMO

The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and elongation on axons, as well as during axon sorting, ensheathment, and myelination, require their close interaction with the surrounding laminin-rich basal lamina. In contrast to myelinating central nervous system glia, SCs strongly and constitutively express the giant scaffolding protein AHNAK1, localized essentially underneath the outer, abaxonal plasma membrane. Using electron microscopy, we show here that in the sciatic nerve of ahnak1(-) (/) (-) mice the ultrastructure of myelinated, and unmyelinated (Remak) fibers is affected. The major SC laminin receptor ß-dystroglycan co-immunoprecipitates with AHNAK1 shows reduced expression in ahnak1(-) (/) (-) SCs, and is no longer detectable in Cajal bands on myelinated fibers in ahnak1(-) (/) (-) sciatic nerve. Reduced migration velocity in a scratch wound assay of purified ahnak1(-) (/) (-) primary SCs cultured on a laminin substrate indicated a function of AHNAK1 in SC motility. This was corroborated by atomic force microscopy measurements, which revealed a greater mechanical rigidity of shaft and leading tip of ahnak1(-) (/) (-) SC processes. Internodal lengths of large fibers are decreased in ahnak1(-) (/) (-) sciatic nerve, and longitudinal extension of myelin segments is even more strongly reduced after acute knockdown of AHNAK1 in SCs of developing sciatic nerve. Together, our results suggest that by interfering in the cross-talk between the transmembrane form of the laminin receptor dystroglycan and F-actin, AHNAK1 influences the cytoskeleton organization of SCs, and thus plays a role in the regulation of their morphology and motility and lastly, the myelination process.


Assuntos
Movimento Celular/fisiologia , Distroglicanas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Células de Schwann/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Axônios/diagnóstico por imagem , Axônios/fisiologia , Células Cultivadas , Elasticidade , Técnicas de Silenciamento de Genes , Proteínas de Membrana/genética , Camundongos Knockout , Microscopia de Força Atômica , Bainha de Mielina/fisiologia , Bainha de Mielina/ultraestrutura , Proteínas de Neoplasias/genética , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Mielinizadas/ultraestrutura , RNA Interferente Pequeno/metabolismo , Células de Schwann/ultraestrutura , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/fisiopatologia , Nervo Isquiático/ultraestrutura , Ultrassonografia
2.
J Neurosci ; 31(46): 16541-9, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22090480

RESUMO

The mechanotransduction of vestibular sensory cells depends on the high endolymphatic potassium concentration ([K+]) maintained by a fine balance between K+ secretion and absorption by epithelial cells. Despite the crucial role of endolymph as an electrochemical motor for mechanotransduction, little is known about the processes that govern endolymph formation. To address these, we took advantage of an organotypic rodent model, which regenerates a genuine neonatal vestibular endolymphatic compartment, facilitating the determination of endolymphatic [K+] and transepithelial potential (Vt) during endolymph formation. While mature Vt levels are almost immediately achieved, K+ accumulates to reach a steady [K+] by day 5 in culture. Inhibition of sensory cell K+ efflux enhances [K+] regardless of the blocker used (FM1.43, amikacin, gentamicin, or gadolinium). Targeting K+ secretion with bumetanide partially and transiently reduces [K+], while ouabain application and Kcne1 deletion almost abolishes it. Immunofluorescence studies demonstrate that dark cells do not express Na-K-2Cl cotransporter 1 (the target of bumetanide) in cultured and young mouse utricles, while Na/K-ATPase (the target of ouabain) is found in dark cells and transitional cells. This global analysis of the involvement of endolymphatic homeostasis actors in the immature organ (1) confirms that KCNE1 channels are necessary for K+ secretion, (2) highlights Na/K-ATPase as the key endolymphatic K+ provider and shows that Na-K-2Cl cotransporter 1 has a limited impact on K+ influx, and (3) demonstrates that transitional cells are involved in K+ secretion in the early endolymphatic compartment.


Assuntos
Endolinfa/metabolismo , Células Epiteliais/fisiologia , Sáculo e Utrículo/crescimento & desenvolvimento , Sáculo e Utrículo/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Aminoglicosídeos/farmacologia , Animais , Animais Recém-Nascidos , Bumetanida/farmacologia , Endocitose/genética , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Feminino , Gadolínio/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Ouabaína/farmacologia , Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/deficiência , Compostos de Piridínio/farmacocinética , Compostos de Amônio Quaternário/farmacocinética , Ratos , Ratos Wistar , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Fatores de Tempo
3.
Front Pharmacol ; 12: 614949, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643047

RESUMO

In traumatic spinal cord injury, the initial trauma is followed by a cascade of impairments, including excitotoxicity and calcium overload, which ultimately induces secondary damages. The sigma-1 receptor is widely expressed in the central nervous system and is acknowledged to play a key role in calcium homeostasis. Treatments with agonists of the sigma-1 receptor induce beneficial effects in several animal models of neurological diseases. In traumatic injury the use of an antagonist of the sigma-1 receptor reversed several symptoms of central neuropathic pain. Here, we investigated whether sigma-1 receptor activation with PRE-084 is beneficial or detrimental following SCI in mice. First, we report that PRE-084 treatment after injury does not improve motor function recovery. Second, using ex vivo diffusion weighted magnetic resonance imaging completed by histological analysis, we highlight that σ1R agonist treatment after SCI does not limit lesion size. Finally, PRE-084 treatment following SCI decreases NeuN expression and increases astrocytic reactivity. Our findings suggest that activation of sigma-1 receptor after traumatic spinal cord injury is detrimental on tissue preservation and motor function recovery in mice.

4.
Brain Sci ; 11(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34942945

RESUMO

Microglia are major players in scar formation after an injury to the spinal cord. Microglia proliferation, differentiation, and survival are regulated by the colony-stimulating factor 1 (CSF1). Complete microglia elimination using CSF1 receptor (CSF1R) inhibitors worsens motor function recovery after spinal injury (SCI). Conversely, a 1-week oral treatment with GW2580, a CSF1R inhibitor that only inhibits microglia proliferation, promotes motor recovery. Here, we investigate whether prolonged GW2580 treatment further increases beneficial effects on locomotion after SCI. We thus assessed the effect of a 6-week GW2580 oral treatment after lateral hemisection of the spinal cord on functional recovery and its outcome on tissue and cellular responses in adult mice. Long-term depletion of microglia proliferation after SCI failed to improve motor recovery and had no effect on tissue reorganization, as revealed by ex vivo diffusion-weighted magnetic resonance imaging. Six weeks after SCI, GW2580 treatment decreased microglial reactivity and increased astrocytic reactivity. We thus demonstrate that increasing the duration of GW2580 treatment is not beneficial for motor recovery after SCI.

5.
Front Cell Neurosci ; 12: 368, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386212

RESUMO

Spinal cord injury (SCI) induces a pronounced neuroinflammation driven by activation and proliferation of resident microglia as well as infiltrating peripheral monocyte-derived macrophages. Depending on the time post-lesion, positive and detrimental influences of microglia/macrophages on axonal regeneration had been reported after SCI, raising the issue whether their modulation may represent an attractive therapeutic strategy. Colony-stimulating factor 1 (CSF1) regulates microglia/macrophages proliferation, differentiation and survival thus, pharmacological treatments using CSF1 receptor (CSF1R) inhibitors had been used to ablate microglia. We analyzed the effect of chronic (10 weeks) food diet containing GW2580 (a CSF1R inhibitor) in mice that underwent lateral spinal cord hemisection (HS) at vertebral thoracic level 9. Treatment started 4 weeks prior to SCI and continued until 6 weeks post-lesion. We first demonstrate that GW2580 treatment did not modify microglial response in non-injured spinal cords. Conversely, a strong decrease in proliferating microglia was observed following SCI. Second, we showed that GW2580 treatment improved some parameters of motor recovery in injured animals through better paw placement. Using in and ex vivo magnetic resonance imaging (MRI), we then established that GW2580 treatment had no effect on lesion extension and volume. However, histological analyses revealed that GW2580-treated animals had reduced gliosis and microcavity formation following SCI. In conclusion, CSF1R blockade using GW2580 specifically inhibits SCI-induced microglia/macrophages proliferation, reduces gliosis and microcavity formations and improves fine motor recovery after incomplete SCI. Preventing microglial proliferation may offer therapeutic approach to limit neuroinflammation, promote tissue preservation and motor recovery following SCI.

7.
Nat Commun ; 7: 12186, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435623

RESUMO

Fast nerve conduction relies on successive myelin segments that electrically isolate axons. Segment geometry-diameter and length-is critical for the optimization of nerve conduction and the molecular mechanisms allowing this optimized geometry are partially known. We show here that peripheral myelin elongation is dynamically regulated by stimulation of YAP (Yes-associated protein) transcription cofactor activity during axonal elongation and limited by inhibition of YAP activity via the Hippo pathway. YAP promotes myelin and non-myelin genes transcription while the polarity protein Crb3, localized at the tips of the myelin sheath, activates the Hippo pathway to temper YAP activity, therefore allowing for optimal myelin growth. Dystrophic Dy(2j/2j) mice mimicking human peripheral neuropathy with reduced internodal lengths have decreased nuclear YAP which, when corrected, leads to longer internodes. These data show a novel mechanism controlling myelin growth and nerve conduction, and provide a molecular ground for disease with short myelin segments.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Axônios/metabolismo , Proteínas de Membrana/metabolismo , Bainha de Mielina/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Axônios/ultraestrutura , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Células HEK293 , Via de Sinalização Hippo , Humanos , Glicoproteínas de Membrana , Camundongos , Fenótipo , Fosforilação , Ratos , Células de Schwann/metabolismo , Transcrição Gênica , Proteínas de Sinalização YAP
8.
Stem Cells ; 25(2): 340-53, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17053213

RESUMO

Neural stem cells cultured with fibroblast growth factor 2 (FGF2)/epidermal growth factor (EGF) generate clonal expansions called neurospheres (NS), which are widely used for therapy in animal models. However, their cellular composition is still poorly defined. Here, we report that NS derived from several embryonic and adult central nervous system (CNS) regions are composed mainly of remarkable cells coexpressing radial glia markers (BLBP, RC2, GLAST), oligodendrogenic/neurogenic factors (Mash1, Olig2, Nkx2.2), and markers that in vivo are typical of the oligodendrocyte lineage (NG2, A2B5, PDGFR-alpha). On NS differentiation, the latter remain mostly expressed in neurons, together with Olig2 and Mash1. Using cytometry, we show that in growing NS the small population of multipotential self-renewing NS-forming cells are A2B5(+) and NG2(+). Additionally, we demonstrate that these NS-forming cells in the embryonic spinal cord were initially NG2(-) and rapidly acquired NG2 in vitro. NG2 and Olig2 were found to be rapidly induced by cell culture conditions in spinal cord neural precursor cells. Olig2 expression was also induced in astrocytes and embryonic peripheral nervous system (PNS) cells in culture after EGF/FGF treatment. These data provide new evidence for profound phenotypic modifications in CNS and PNS neural precursor cells induced by culture conditions.


Assuntos
Antígenos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistema Nervoso Central/citologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Sistema Nervoso Periférico/citologia , Fenótipo , Proteoglicanas/metabolismo , Células-Tronco/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Gangliosídeos/metabolismo , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteína Homeobox Nkx-2.2 , Camundongos , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição SOX9 , Medula Espinal/citologia , Medula Espinal/embriologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
9.
J Neurobiol ; 57(3): 270-90, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14608663

RESUMO

Vestibular nerve Schwann cells are predisposed to develop schwannoma. While knowledge concerning this condition has greatly improved, little is known about properties of normal vestibular Schwann cells. In an attempt to understand this predisposition, we evaluated cell density regulation and proliferative features of these cells taken from 6-day-old rats. Data were compared to those obtained with sciatic Schwann cells. In both vestibular and sciatic 7-day-old cultures, Schwann cells appear as bipolar or flattened cells. However, sciatic and vestibular cells greatly differ in other aspects: on poly-L-lysine coating, sciatic cells specifically synthesize myelin basic protein, while expression of P0 mRNAs is restricted to some vestibular cells. Laminin increases sciatic cell density but not that of vestibular cells. Fibronectin selectively enhances the proliferation of vestibular Schwann cells and lacks an effect on sciatic ones. Comparison of cell density changes between sciatic and vestibular cells shows that they are sensitive to two different sets of growth factors. Progesterone and FGF-2 combined with forskolin selectively enhance the cell density of sciatic glia, while IGF-1 and GDNF specifically increase vestibular cell density. Furthermore, BrdU incorporation assays indicate that GDNF is also a mitogen for vestibular cells. Altogether, vestibular Schwann cells display phenotypic features and responsiveness to exogenous signals that are significantly different from sciatic Schwann cells, suggesting that vestibular glia form a subpopulation of Schwann cells.


Assuntos
Proteínas da Matriz Extracelular/farmacologia , Substâncias de Crescimento/farmacologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/fisiologia , Nervo Vestibular/citologia , Animais , Contagem de Células , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Imuno-Histoquímica , Hibridização In Situ , Ratos , Nervo Isquiático/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa