Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Emerg Radiol ; 31(1): 73-82, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224366

RESUMO

PURPOSE: Acute chest syndrome (ACS) is secondary to occlusion of the pulmonary vasculature and a potentially life-threatening complication of sickle cell disease (SCD). Dual-energy CT (DECT) iodine perfusion map reconstructions can provide a method to visualize and quantify the extent of pulmonary microthrombi. METHODS: A total of 102 patients with sickle cell disease who underwent DECT CTPA with perfusion were retrospectively identified. The presence or absence of airspace opacities, segmental perfusion defects, and acute or chronic pulmonary emboli was noted. The number of segmental perfusion defects between patients with and without acute chest syndrome was compared. Sub-analyses were performed to investigate robustness. RESULTS: Of the 102 patients, 68 were clinically determined to not have ACS and 34 were determined to have ACS by clinical criteria. Of the patients with ACS, 82.4% were found to have perfusion defects with a median of 2 perfusion defects per patient. The presence of any or new perfusion defects was significantly associated with the diagnosis of ACS (P = 0.005 and < 0.001, respectively). Excluding patients with pulmonary embolism, 79% of patients with ACS had old or new perfusion defects, and the specificity for new perfusion defects was 87%, higher than consolidation/ground glass opacities (80%). CONCLUSION: DECT iodine map has the capability to depict microthrombi as perfusion defects. The presence of segmental perfusion defects on dual-energy CT maps was found to be associated with ACS with potential for improved specificity and reclassification.


Assuntos
Síndrome Torácica Aguda , Anemia Falciforme , Iodo , Embolia Pulmonar , Humanos , Síndrome Torácica Aguda/diagnóstico por imagem , Estudos Retrospectivos , Angiografia/métodos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Pulmão , Embolia Pulmonar/diagnóstico por imagem , Anemia Falciforme/complicações , Anemia Falciforme/diagnóstico por imagem , Perfusão
2.
Pol J Radiol ; 89: e63-e69, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371894

RESUMO

Purpose: Computed tomography (CT) pulmonary angiography is considered the gold standard for pulmonary embolism (PE) diagnosis, relying on the discrimination between contrast and embolus. Photon-counting detector CT (PCD-CT) generates monoenergetic reconstructions through energy-resolved detection. Virtual monoenergetic images (VMI) at low keV can be used to improve pulmonary artery opacification. While studies have assessed VMI for PE diagnosis on dual-energy CT (DECT), there is a lack of literature on optimal settings for PCD-CT-PE reconstructions, warranting further investigation. Material and methods: Twenty-five sequential patients who underwent PCD-CT pulmonary angiography for suspicion of acute PE were retrospectively included in this study. Quantitative metrics including signal-to-noise ratio (SNR) and contrast-to-noise (CNR) ratio were calculated for 4 VMI values (40, 60, 80, and 100 keV). Qualitative measures of diagnostic quality were obtained for proximal to distal pulmonary artery branches by 2 cardiothoracic radiologists using a 5-point modified Likert scale. Results: SNR and CNR were highest for the 40 keV VMI (49.3 ± 22.2 and 48.2 ± 22.1, respectively) and were inversely related to monoenergetic keV. Qualitatively, 40 and 60 keV both exhibited excellent diagnostic quality (mean main pulmonary artery: 5.0 ± 0 and 5.0 ± 0; subsegmental pulmonary arteries 4.9 ± 0.1 and 4.9 ± 0.1, respectively) while distal segments at high (80-100) keVs had worse quality. Conclusions: 40 keV was the best individual VMI for the detection of pulmonary embolism by quantitative metrics. Qualitatively, 40-60 keV reconstructions may be used without a significant decrease in subjective quality. VMIs at higher keV lead to reduced opacification of the distal pulmonary arteries, resulting in decreased image quality.

4.
Acad Radiol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876842

RESUMO

RATIONALE AND OBJECTIVES: Managing contrast reactions is critical as contrast reactions can be life-threatening and unpredictable. Institutions need an effective system to handle these events. Currently, there is no standard practice for assigning trainees, radiologists, non-radiologist physicians, or other non-physician providers for management of contrast reaction. MATERIALS AND METHODS: The Association of Academic Radiologists (AAR) created a task force to address this gap. The AAR task force reviewed existing practices, studied available literature, and consulted experts related to contrast reaction management. The Society of Chairs of Academic Radiology Departments (SCARD) members were surveyed using a questionnaire focused on staffing strategies for contrast reaction management. RESULTS: The task force found disparities in contrast reactions management across institutions and healthcare providers. There is a lack of standardized protocols for assigning personnel for contrast reaction management. CONCLUSION: The AAR task force suggests developing standardized protocols for contrast reaction management. The protocols should outline clear roles for different healthcare providers involved in these events.

5.
Clin Imaging ; 113: 110235, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39059085

RESUMO

OBJECTIVE: This study aims to assess the efficacy of polyenergetic reconstruction methods in reducing streak artifacts caused by dual source imaging in Photon Counting Detector Computed Tomography (PCD-CT) imaging, thereby improving image quality and diagnostic accuracy. METHODS: A retrospective cohort study was conducted, involving 50 patients who underwent chest Computed Tomography Angiography with PCD-CT, focusing on those with streak artifacts. Quantitative and qualitative analyses were performed on images reconstructed using monoenergetic and polyenergetic techniques. Quantitative evaluations measured the attenuation of tracheal air density in regions affected by streak artifacts, while qualitative assessments employed a modified Likert scale to rate image quality. Statistical analyses included Wilcoxon's signed-rank tests and Spearman's correlation, alongside assessments of inter-rater reliability. RESULTS: There was significantly lower attenuation of tracheal air density on the polyenergetic reconstructions (Median - 1010 ± 62 HU vs -930 ± 110 HU; P < 0.001), and significantly decreased variation on the polyenergetic reconstructions (Median 65.2 ± 79.5 HU vs 38.8 ± 33.9 HU; P < 0.001). The median modified-Likert scale were significantly better for the polyenergetic reconstructions (median modified-Likert 4 ± 0.5 vs 2.5 ± 1; P < 0.001). The inter-rater agreement was substantial and not significantly different between reconstructions (Gwet's ACPolyenergetic = 0.78 vs Gwet's ACVMI = 0.775). CONCLUSION: Polyenergetic reconstruction significantly mitigates streak artifacts in PCD-CT imaging, enhancing quantitative and qualitative image quality. This advancement addresses a known limitation of current PCD-CT reconstruction techniques, offering a promising approach to improving diagnostic reliability and accuracy in clinical practice. We demonstrate that future software implementations can resolve this artifact.

6.
Radiol Cardiothorac Imaging ; 6(4): e230328, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39023373

RESUMO

Purpose To investigate the impact of plaque size and density on virtual noncontrast (VNC)-based coronary artery calcium scoring (CACS) using photon-counting detector CT and to provide safety net reconstructions for improved detection of subtle plaques in patients whose VNC-based CACS would otherwise be erroneously zero when compared with true noncontrast (TNC)-based CACS. Materials and Methods In this prospective study, CACS was evaluated in a phantom containing calcifications with different diameters (5, 3, and 1 mm) and densities (800, 400, and 200 mg/cm3) and in participants who underwent TNC and contrast-enhanced cardiac photon-counting detector CT (July 2021-March 2022). VNC images were reconstructed at different virtual monoenergetic imaging (55-80 keV) and quantum iterative reconstruction (QIR) levels (QIR,1-4). TNC scans at 70 keV with QIR off served as the reference standard. In vitro CACS was analyzed using standard settings (3.0-mm sections, kernel Qr36, 130-HU threshold). Calcification detectability and CACS of small and low-density plaques were also evaluated using 1.0-mm sections, kernel Qr44, and 120- or 110-HU thresholds. Safety net reconstructions were defined based on background Agatston scores and evaluated in vivo in TNC plaques initially nondetectable using standard VNC reconstructions. Results The in vivo cohort included 63 participants (57.8 years ± 15.5 [SD]; 37 [59%] male, 26 [41%] female). Correlation and agreement between standard CACSVNC and CACSTNC were higher in large- and medium-sized and high- and medium-density than in low-density plaques (in vitro: intraclass correlation coefficient [ICC] ≥ 0.90; r > 0.9 vs ICC = 0.20-0.48; r = 0.5-0.6). Small plaques were not detectable using standard VNC reconstructions. Calcification detectability was highest using 1.0-mm sections, kernel Qr44, 120- and 110-HU thresholds, and QIR level of 2 or less VNC reconstructions. Compared with standard VNC, using safety net reconstructions (55 keV, QIR 2, 110-HU threshold) for in vivo subtle plaque detection led to higher detection (increased by 89% [50 of 56]) and improved correlation and agreement of CACSVNC with CACSTNC (in vivo: ICC = 0.51-0.61; r = 0.6). Conclusion Compared with TNC-based calcium scoring, VNC-based calcium scoring was limited for small and low-density plaques but improved using safety net reconstructions, which may be particularly useful in patients with low calcium scores who would otherwise be treated based on potentially false-negative results. Keywords: Coronary Artery Calcium CT, Photon-Counting Detector CT, Virtual Noncontrast, Plaque Size, Plaque Density Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Doença da Artéria Coronariana , Imagens de Fantasmas , Placa Aterosclerótica , Humanos , Masculino , Feminino , Estudos Prospectivos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Pessoa de Meia-Idade , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/patologia , Idoso , Fótons , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/patologia , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Angiografia Coronária/métodos , Meios de Contraste
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa