RESUMO
This investigation delves into the dynamic metabolic shifts within barley grains during the roasting process, employing UPLC-QqQ-MS/MS analysis. The complex spectrum of metabolites before and after roasting is revealed. The resulting data, unveils substantial transformations in chemical composition during roasting. A total of 62 chromatographic peaks spanning phenolic compounds, flavones, Millard Reaction Products, amino acids, lignans, vitamins, folates, and anthocyanins were annotated. Leveraging UPLC-QqQ-MS/MS analysis, we scrutinized the intricate metabolite profile before and after roasting where the roasting process was found to trigger dynamic changes across diverse metabolite classes particularly Millard Reaction Products, produced through the Maillard reaction, with dihydro-5-methyl-5H-cyclopentapyrazine, maltol and hydroxy maltol emerging as discerning markers of roasting progression. Amino acids and sugars showed degradation, while beta-glucan, a signature barley sugar, experienced notable decline. Folate derivatives witnessed pronounced reduction, aligning with the heat sensitivity of folates. Harnessing the power of multivariate data analysis, the consequences of roasting materialize through distinct clusters in PCA and OPLS-DA plots. Noteworthy, roasting duration governs the trajectory of metabolic divergence, culminating in the identification of roasting-specific markers. Epigallocatechin, procyanidin B, 10-HCO-H4 folate, and hordatine A emerge as pivotal discriminators. Orthogonal Projection to Latent Structure (OPLS) analysis linked anti-inflammatory activity with 30-min, 1-hour, and 1.5-hour roasted samples, with hordatine B in addition to some Millard Reaction Products being correlated with pro-inflammatory marker downregulation.. This study encapsulates the intricate metabolic metamorphosis ignited by roasting in barley grains, offering a holistic comprehension of their potential health-enhancing attributes. Key metabolites act as poignant indicators of these transformations, substantiating the complex interplay between roasting and the barley grain metabolome.
Assuntos
Hordeum , Hordeum/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Antocianinas/análise , Quimiometria , Aminoácidos/análise , Ácido FólicoRESUMO
Yucca filamentosa (YF) is widely used in folk medicine for its anti-inflammatory effects. Our study aimed to evaluate the chemical profile of YF extracts. Additionally, the gastroprotective efficacy of its crude leaf extract and nano-cubosomal formulation was assessed in a rat model of ethanol-induced gastric injury by altering the HMGB-1/RAGE/TLR4/NF-κB pathway. The phytochemical composition of YF was investigated using FTIR spectroscopy and LC-MS/MS techniques. Standardization was further accomplished using HPLC. Rats were treated orally with yucca crude extract or its nano-cubosomal formulation at doses of 25, 50, and 100 mg/kg. Famotidine (50 mg/kg, IP) was used as a reference drug. After 1 h, rats were administered ethanol (1 ml, 95 %, orally). One hour later, the rats were sacrificed, and the serum was separated to determine TNF-α and IL-6 levels. Stomachs were excised for the calculation of the ulcer index and histopathological examinations. Stomach tissue homogenate was used to determine MDA and catalase levels. Additionally, the expression levels of HMGB-1/RAGE/TLR4/NF-κB were assessed. Phytochemical analysis confirmed the predominance of steroidal saponins, sucrose, organic and phenolic acids, and kaempferol. The nano-cubosomal formulation demonstrated enhanced gastroprotective, anti-oxidant, and anti-inflammatory efficacy compared to the crude extract at all tested doses. The most prominent effect was observed in rats pretreated with the YF nano-cubosomal formulation at a dose of 100 mg/kg, which was similar to normal control and famotidine-treated rats. Our results highlighted the enhanced gastroprotective impact of the yucca nano-cubosomal formulation in a dose-dependent manner. This suggests its potential use in preventing peptic ulcer recurrence.
Assuntos
Antiulcerosos , Etanol , Proteína HMGB1 , Extratos Vegetais , Folhas de Planta , Úlcera Gástrica , Yucca , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Etanol/química , Folhas de Planta/química , Masculino , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Proteína HMGB1/metabolismo , Ratos , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Antiulcerosos/química , Antiulcerosos/administração & dosagem , Yucca/química , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Ratos Wistar , Nanopartículas/química , Interleucina-6/metabolismo , Interleucina-6/sangue , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/sangueRESUMO
The most frequent malignant tumor in women is breast cancer, and its incidence has been rising every year. Propolis has been used for its antibacterial, antifungal, and anti-inflammatory properties. The present study aimed to examine the effect of the Egyptian Propolis Extract (ProE) and its improved targeting using nanostructured lipid carriers (ProE-NLC) in Ehrlich Ascites Carcinoma (EAC) bearing mice, the common animal model for mammary tumors. EAC mice were treated either with 5-fluorouracil (5-FU), ProE, ProE-NLC, or a combination of ProE-NLC and 5-FU. Their effect on different inflammatory, angiogenic, proliferation and apoptotic markers, as well as miR-223, was examined. ProE and ProE-NLC have shown potential anti-breast cancer activity through multiple interrelated mechanisms including, the elevation of antioxidant levels, suppression of angiogenesis, inflammatory and mTOR pathways, and induction of the apoptotic pathway. All of which is a function of increased miRNA-223 expression. The efficiency of propolis was enhanced when loaded in nanostructured lipid carriers, increasing the effectiveness of the chemotherapeutic agent 5-FU. In conclusion, this study is the first to develop propolis-loaded NLC for breast cancer targeting and to recommend propolis as an antitumor agent against breast cancer or as an adjuvant treatment with chemotherapeutic agents to enhance their antitumor activity and decrease their side effects. Tumor targeting by ProE-NLC should be considered as a future therapeutic perspective in breast cancer.
Assuntos
Ascomicetos , Neoplasias da Mama , Carcinoma , MicroRNAs , Própole , Feminino , Humanos , Animais , Camundongos , Própole/farmacologia , Processos Neoplásicos , Neoplasias da Mama/tratamento farmacológico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Ascite , Lipídeos , MicroRNAs/genéticaRESUMO
A comprehensive study of leaves, flowers, fruits, bark, and seeds' extracts of Gmelina arborea Roxb was performed for first time to investigate their anti-inflammatory, anti-Alzheimer, and antidiabetic activities. A thorough comparative phytochemical investigation of the five organs was performed using Tandem ESI-LC-MS. The biological investigation, further aided by multivariate data analysis and molecular docking proved the highly significant potential of using G.arborea organs' extracts as medicinal agents. Chemometric analysis of the obtained data revealed 4 distinct clusters among different samples of the 5 G.arborea (GA)organs and also confirmed that each organ was chemically distinct from the others, except for fruits and seeds which were closely correlated. Compounds anticipated to be responsible for activity were identified by LC-MS/MS. To clarify the differential chemical biomarkers of G. arborea organs, an orthogonal partial least squares discriminant analysis (OPLS-DA) was constructed. Bark exhibited it's in vitro anti-inflammatory activity through down regulation of COX-1 pro-inflammatory markers while fruits and leaves affected mainly DPP4 the marker for diabetes, and flowers were the most potent against Alzheimer maker acetylcholine (ACE) esterase. The metabolomic profiling of the 5 extracts lead to the identification of 27 compounds in negative ion mode and the differences in chemical composition were correlated to difference in activity. Iridoid glycosides were the major class of identified compounds. Molecular docking proved the different affinities of our metabolite towards different targets. Gmelina arborea Roxb. is a very important plant both economically and medicinally.
Assuntos
Extratos Vegetais , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Cromatografia Líquida , Estrutura MolecularRESUMO
Yucca aloifolia L. fruit (Yucca or Spanish bayonet, family Asparagaceae) is recognized for its purplish red color reflecting its anthocyanin content, which has a powerful antioxidant activity. This study aimed to investigate yucca (YA) fruit extract's protective effect on Parkinson's disease (PD). In vitro study, the anti-inflammatory activity of yucca fruit extracts was explored by measuring tumor necrosis factor receptor 2 (TNF-R2) and nuclear factor kappa B (NF-KB) to choose the most effective extract. Afterward, a detailed in vivo investigation of the protective effect of the most active extract on rotenone-induced PD was performed on male albino Wister rats. First, the safety of the extract in two different doses (50 and 100 mg/kg in 0.9% saline orally) was confirmed by a toxicological study. The rats were divided into four groups: 1) normal control (NC); 2) rotenone group; and third and fourth groups received 50 and 100 mg/kg yucca extract, respectively. The neurobehavioral and locomotor activities of the rats were tested by rotarod, open field, and forced swim tests. Striatal dopamine, renal and liver functions, and oxidative stress markers were assessed. Western blot analysis of brain tissue samples was performed for p-AMPK, Wnt3a, and ß-catenin. Histopathological examination of striatal tissue samples was performed by light and electron microscopy (EM). The metabolites of the active extract were characterized using high-resolution LC-MS/MS, and the results showed the prevalence of anthocyanins, saponins, phenolics, and choline. Biochemical and histopathological tests revealed a dose-dependent improvement with oral Yucca extract. The current study suggests a possible neuroprotective effect of the acidified 50% ethanol extract (YA-C) of the edible Yucca fruit, making it a promising therapeutic target for PD.
Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Yucca , Masculino , Animais , Ratos , Antocianinas , Cromatografia Líquida , Frutas , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Rotenona/toxicidade , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologiaRESUMO
Meat flavor is composed of a complex mixture of volatile compounds developed as a result of heat driven multi-directional reactions. Typical reactions include Maillard reaction, lipid oxidation, as well as nitrogenous compounds degradation. Such complex flavor is characterized by a rich variety of volatile species, and to strongly influence consumer's preference. The objective of this review is to holistically dissect the flavor characteristic for cooked meat products with special emphasis on grilling and the factors that affect their production to ensure best quality and or safety levels. The review also highlights different analytical techniques used for the detection of flavor compounds in grilled meat. This comprehensive literature research critically analyze grilled flavor derived from heat mediated reactions, with a special emphasis on key flavors or hazard chemicals and their production mechanism. The various influencing factors i.e., grilling temperature, meat, food components, animal ante-mortem factors and food additives are summarized.
Assuntos
Carne Vermelha , Paladar , Animais , Culinária , Aromatizantes , Reação de Maillard , Carne/análise , Carne Vermelha/análiseRESUMO
Yucca aloifolia, Y. aloifolia variegata, Y. elephantipes and Y. filamentosa were investigated. DNA sequencing was performed for the four plants and a genomic DNA fingerprint was obtained and provided. The cytotoxic activities against four human cancer cell lines were investigated. The ethanolic extracts of leaves of Y. aloifolia variegata prevailed, especially against liver cancer HepG-2 and breast cancer MCF-7. In vivo assessment of hepatoprotective activity in rats also revealed the hepatoprotective potential of the ethanolic extracts of the four plants against CCl4- induced rats' liver damage. Qualitative and quantitative analysis of the flavonoid and phenolic content of the promising species was performed using HPLC. The analysis identified and quantified 18 flavonoids and 19 phenolic acids in the different fractions of Y. aloifolia variegata, among which the major flavonoids were hesperidin and kaemp-3-(2-p-coumaroyl) glucose and the major phenolic acids were gallic acid and protocatechuic acid.
Assuntos
Impressões Digitais de DNA , Flavonoides/farmacologia , Fenóis/farmacologia , Yucca/química , Yucca/genética , Células A549 , Animais , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Egito , Flavonoides/isolamento & purificação , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Células MCF-7 , Masculino , Fenóis/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Ratos , Yucca/classificaçãoRESUMO
Two essential oil-containing plants growing wildly in Egypt: Conyza linifolia (Willd.) Täckh. (Asteraceae) and Chenopodium ambrosioides L. (Chenopodiaceae) were subjected to essential oil analysis and biological investigation. The essential oils from both plants were prepared by hydrodistillation, and GC/MS was employed for volatiles profiling. This study is the first to perform GC/MS analysis of C. linifolia essential oil growing in Egypt. C. linifolia essential oil contained mainly sesquiterpenes, while that of C. ambrosioides was rich in monoterpenes. Ascaridole, previously identified as the major component of the latter, was found at much lower levels. In addition, the oils were investigated for their antimicrobial activity against two Gram positive and two Gram negative bacteria, and one fungus. The insecticidal activities of both oils, including mosquitocidal and pesticidal potentials, were also evaluated. The results of biological activities encourage further investigation of the two oils as antimicrobial and insecticidal agents of natural origin.