Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(10): 2466-2482.e12, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39276771

RESUMO

Adoptive cell therapy (ACT) using in vitro expanded tumor-infiltrating lymphocytes (TILs) has inconsistent clinical responses. To better understand determinants of therapeutic success, we tracked TIL clonotypes from baseline tumors to ACT products and post-ACT blood and tumor samples in melanoma patients using single-cell RNA and T cell receptor (TCR) sequencing. Patients with clinical responses had baseline tumors enriched in tumor-reactive TILs, and these were more effectively mobilized upon in vitro expansion, yielding products enriched in tumor-specific CD8+ cells that preferentially infiltrated tumors post-ACT. Conversely, lack of clinical responses was associated with tumors devoid of tumor-reactive resident clonotypes and with cell products mostly composed of blood-borne clonotypes that persisted in blood but not in tumors post-ACT. Upon expansion, tumor-specific TILs lost tumor-associated transcriptional signatures, including exhaustion, and responders exhibited an intermediate exhausted effector state after TIL engraftment in the tumor, suggesting functional reinvigoration. Our findings provide insight into the nature and dynamics of tumor-specific clonotypes associated with clinical response to TIL-ACT, with implications for treatment optimization.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia Adotiva , Linfócitos do Interstício Tumoral , Melanoma , Receptores de Antígenos de Linfócitos T , Humanos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/terapia , Imunoterapia Adotiva/métodos , Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Células Clonais , Animais , Resultado do Tratamento
2.
Cell ; 175(1): 159-170.e16, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241606

RESUMO

Most high-grade serous ovarian cancer (HGSOC) patients develop resistance to platinum-based chemotherapy and recur, but 15% remain disease free over a decade. To discover drivers of long-term survival, we quantitatively analyzed the proteomes of platinum-resistant and -sensitive HGSOC patients from minute amounts of formalin-fixed, paraffin-embedded tumors. This revealed cancer/testis antigen 45 (CT45) as an independent prognostic factor associated with a doubling of disease-free survival in advanced-stage HGSOC. Phospho- and interaction proteomics tied CT45 to DNA damage pathways through direct interaction with the PP4 phosphatase complex. In vitro, CT45 regulated PP4 activity, and its high expression led to increased DNA damage and platinum sensitivity. CT45-derived HLA class I peptides, identified by immunopeptidomics, activate patient-derived cytotoxic T cells and promote tumor cell killing. This study highlights the power of clinical cancer proteomics to identify targets for chemo- and immunotherapy and illuminate their biological roles.


Assuntos
Antígenos de Neoplasias/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteômica/métodos , Idoso , Sequência de Aminoácidos/genética , Antineoplásicos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imunoterapia/métodos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Prognóstico
3.
Immunity ; 56(11): 2650-2663.e6, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37816353

RESUMO

The accurate selection of neoantigens that bind to class I human leukocyte antigen (HLA) and are recognized by autologous T cells is a crucial step in many cancer immunotherapy pipelines. We reprocessed whole-exome sequencing and RNA sequencing (RNA-seq) data from 120 cancer patients from two external large-scale neoantigen immunogenicity screening assays combined with an in-house dataset of 11 patients and identified 46,017 somatic single-nucleotide variant mutations and 1,781,445 neo-peptides, of which 212 mutations and 178 neo-peptides were immunogenic. Beyond features commonly used for neoantigen prioritization, factors such as the location of neo-peptides within protein HLA presentation hotspots, binding promiscuity, and the role of the mutated gene in oncogenicity were predictive for immunogenicity. The classifiers accurately predicted neoantigen immunogenicity across datasets and improved their ranking by up to 30%. Besides insights into machine learning methods for neoantigen ranking, we have provided homogenized datasets valuable for developing and benchmarking companion algorithms for neoantigen-based immunotherapies.


Assuntos
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/genética , Neoplasias/genética , Neoplasias/terapia , Antígenos de Histocompatibilidade Classe I , Aprendizado de Máquina , Peptídeos , Imunoterapia/métodos
4.
Immunity ; 56(6): 1359-1375.e13, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37023751

RESUMO

CD4+ T cells orchestrate the adaptive immune response against pathogens and cancer by recognizing epitopes presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II genes represents an important hurdle toward accurate prediction and identification of CD4+ T cell epitopes. Here we collected and curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry. This enabled us to precisely determine the binding motifs of 88 MHC-II alleles across humans, mice, cattle, and chickens. Analysis of these binding specificities combined with X-ray crystallography refined our understanding of the molecular determinants of MHC-II motifs and revealed a widespread reverse-binding mode in HLA-DP ligands. We then developed a machine-learning framework to accurately predict binding specificities and ligands of any MHC-II allele. This tool improves and expands predictions of CD4+ T cell epitopes and enables us to discover viral and bacterial epitopes following the aforementioned reverse-binding mode.


Assuntos
Epitopos de Linfócito T , Peptídeos , Humanos , Animais , Camundongos , Bovinos , Ligantes , Ligação Proteica , Galinhas/metabolismo , Aprendizado de Máquina , Antígenos de Histocompatibilidade Classe II , Alelos
5.
Nature ; 603(7902): 721-727, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264796

RESUMO

Activated T cells secrete interferon-γ, which triggers intracellular tryptophan shortage by upregulating the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme1-4. Here we show that despite tryptophan depletion, in-frame protein synthesis continues across tryptophan codons. We identified tryptophan-to-phenylalanine codon reassignment (W>F) as the major event facilitating this process, and pinpointed tryptophanyl-tRNA synthetase (WARS1) as its source. We call these W>F peptides 'substitutants' to distinguish them from genetically encoded mutants. Using large-scale proteomics analyses, we demonstrate W>F substitutants to be highly abundant in multiple cancer types. W>F substitutants were enriched in tumours relative to matching adjacent normal tissues, and were associated with increased IDO1 expression, oncogenic signalling and the tumour-immune microenvironment. Functionally, W>F substitutants can impair protein activity, but also expand the landscape of antigens presented at the cell surface to activate T cell responses. Thus, substitutants are generated by an alternative decoding mechanism with potential effects on gene function and tumour immunoreactivity.


Assuntos
Triptofano-tRNA Ligase , Triptofano , Códon/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama , Neoplasias/imunologia , Fenilalanina , Linfócitos T , Triptofano/metabolismo , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
6.
Semin Immunol ; 66: 101727, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764021

RESUMO

The immunopeptidome is the set of peptides presented by the major histocompatibility complex (MHC) molecules, in humans also known as the human leukocyte antigen (HLA), on the surface of cells that mediate T-cell immunosurveillance. The immunopeptidome is a sampling of the cellular proteome and hence it contains information about the health state of cells. The peptide repertoire is influenced by intra- and extra-cellular perturbations - such as in the case of drug exposure, infection, or oncogenic transformation. Immunopeptidomics is the bioanalytical method by which the presented peptides are extracted from biological samples and analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry (MS), resulting in a deep qualitative and quantitative snapshot of the immunopeptidome. In this review, we discuss published immunopeptidomics studies from recent years, grouped into three main domains: i) basic, ii) pre-clinical and iii) clinical research and applications. We review selected fundamental immunopeptidomics studies on the antigen processing and presentation machinery, on HLA restriction and studies that advanced our understanding of various diseases, and how exploration of the antigenic landscape allowed immune targeting at the pre-clinical stage, paving the way to pioneering exploratory clinical trials where immunopeptidomics is directly implemented in the conception of innovative treatments for cancer patients.


Assuntos
Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade Classe I , Humanos , Antígenos HLA , Apresentação de Antígeno , Peptídeos
7.
Immunity ; 47(2): 203-208, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813649

RESUMO

A multidisciplinary group of researchers gathered at the Hönggerberg Campus at ETH Zurich, Switzerland, for the first meeting on the Human Immuno-Peptidome Project (https://hupo.org/human-immuno-peptidome-project/). The long-term goal of this project is to map the entire repertoire of peptides presented by human leukocyte antigen molecules using mass spectrometry technologies, and make its robust analysis accessible to any immunologist. Here we outline the specific challenges identified toward this goal, and within this framework, describe the structure of a multipronged program aimed at addressing these challenges and implementing solutions at a community-wide level. Pillars of that program are: (1) method and technology development, (2) standardization, (3) effective data sharing, and (4) education. If successful, this community-driven endeavor might provide a roadmap toward new paradigms in immunology.


Assuntos
Alergia e Imunologia , Mapeamento de Epitopos , Espectrometria de Massas/métodos , Apresentação de Antígeno , Antígenos HLA/metabolismo , Humanos , Disseminação de Informação , Comunicação Interdisciplinar , Peptídeos/metabolismo , Suíça
8.
Mol Cell Proteomics ; 22(9): 100631, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572790

RESUMO

Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from ∼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding."


Assuntos
Biossíntese de Proteínas , Proteoma , Humanos , Proteoma/metabolismo , Proteômica/métodos , Perfil de Ribossomos , Ribossomos/metabolismo , Fases de Leitura Aberta
10.
Mol Cell Proteomics ; 20: 100080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33845167

RESUMO

Mass spectrometry (MS) is the state-of-the-art methodology for capturing the breadth and depth of the immunopeptidome across human leukocyte antigen (HLA) allotypes and cell types. The majority of studies in the immunopeptidomics field are discovery driven. Hence, data-dependent tandem MS (MS/MS) acquisition (DDA) is widely used, as it generates high-quality references of peptide fingerprints. However, DDA suffers from the stochastic selection of abundant ions that impairs sensitivity and reproducibility. In contrast, in data-independent acquisition (DIA), the systematic fragmentation and acquisition of all fragment ions within given isolation m/z windows yield a comprehensive map for a given sample. However, many DIA approaches commonly require generating comprehensive DDA-based spectrum libraries, which can become impractical for studying noncanonical and personalized neoantigens. Because the amount of HLA peptides eluted from biological samples such as small tissue biopsies is typically not sufficient for acquiring both meaningful DDA data necessary for generating comprehensive spectral libraries and DIA MS measurements, the implementation of DIA in the immunopeptidomics translational research domain has remained limited. We implemented a DIA immunopeptidomics workflow and assessed its sensitivity and accuracy by matching DIA data against libraries with growing complexity-from sample-specific libraries to libraries combining 2 to 40 different immunopeptidomics samples. Analyzing DIA immunopeptidomics data against a complex multi-HLA spectral library resulted in a two-fold increase in peptide identification compared with sample-specific library and in a three-fold increase compared with DDA measurements, yet with no detrimental effect on the specificity. Furthermore, we demonstrated the implementation of DIA for sensitive personalized neoantigen discovery through the analysis of DIA data with predicted MS/MS spectra of clinically relevant HLA ligands. We conclude that a comprehensive multi-HLA library for DIA approach in combination with MS/MS prediction is highly advantageous for clinical immunopeptidomics, especially when low amounts of biological samples are available.


Assuntos
Antígenos de Histocompatibilidade , Peptídeos , Proteômica/métodos , Simulação por Computador , Biblioteca de Peptídeos , Espectrometria de Massas em Tandem
11.
Mol Cell Proteomics ; 20: 100032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33592498

RESUMO

CD4+ T cell responses are crucial for inducing and maintaining effective anticancer immunity, and the identification of human leukocyte antigen class II (HLA-II) cancer-specific epitopes is key to the development of potent cancer immunotherapies. In many tumor types, and especially in glioblastoma (GBM), HLA-II complexes are hardly ever naturally expressed. Hence, little is known about immunogenic HLA-II epitopes in GBM. With stable expression of the class II major histocompatibility complex transactivator (CIITA) coupled to a detailed and sensitive mass spectrometry-based immunopeptidomics analysis, we here uncovered a remarkable breadth of the HLA-ligandome in HROG02, HROG17, and RA GBM cell lines. The effect of CIITA expression on the induction of the HLA-II presentation machinery was striking in each of the three cell lines, and it was significantly higher compared with interferon gamma (IFNÉ£) treatment. In total, we identified 16,123 unique HLA-I peptides and 32,690 unique HLA-II peptides. In order to genuinely define the identified peptides as true HLA ligands, we carefully characterized their association with the different HLA allotypes. In addition, we identified 138 and 279 HLA-I and HLA-II ligands, respectively, most of which are novel in GBM, derived from known GBM-associated tumor antigens that have been used as source proteins for a variety of GBM vaccines. Our data further indicate that CIITA-expressing GBM cells acquired an antigen presenting cell-like phenotype as we found that they directly present external proteins as HLA-II ligands. Not only that CIITA-expressing GBM cells are attractive models for antigen discovery endeavors, but also such engineered cells have great therapeutic potential through massive presentation of a diverse antigenic repertoire.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas Nucleares/imunologia , Transativadores/imunologia , Animais , Bovinos , Linhagem Celular Tumoral , Humanos , Proteínas Nucleares/genética , Peptídeos/imunologia , Transativadores/genética
12.
Mol Cell Proteomics ; 19(2): 390-404, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31848261

RESUMO

The presentation of peptides on class I human leukocyte antigen (HLA-I) molecules plays a central role in immune recognition of infected or malignant cells. In cancer, non-self HLA-I ligands can arise from many different alterations, including non-synonymous mutations, gene fusion, cancer-specific alternative mRNA splicing or aberrant post-translational modifications. Identifying HLA-I ligands remains a challenging task that requires either heavy experimental work for in vivo identification or optimized bioinformatics tools for accurate predictions. To date, no HLA-I ligand predictor includes post-translational modifications. To fill this gap, we curated phosphorylated HLA-I ligands from several immunopeptidomics studies (including six newly measured samples) covering 72 HLA-I alleles and retrieved a total of 2,066 unique phosphorylated peptides. We then expanded our motif deconvolution tool to identify precise binding motifs of phosphorylated HLA-I ligands. Our results reveal a clear enrichment of phosphorylated peptides among HLA-C ligands and demonstrate a prevalent role of both HLA-I motifs and kinase motifs on the presentation of phosphorylated peptides. These data further enabled us to develop and validate the first predictor of interactions between HLA-I molecules and phosphorylated peptides.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Ligantes , Espectrometria de Massas , Fosforilação , Proteômica
13.
Proc Natl Acad Sci U S A ; 115(20): 5083-5088, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712860

RESUMO

HLA-I molecules play a central role in antigen presentation. They typically bind 9- to 12-mer peptides, and their canonical binding mode involves anchor residues at the second and last positions of their ligands. To investigate potential noncanonical binding modes, we collected in-depth and accurate HLA peptidomics datasets covering 54 HLA-I alleles and developed algorithms to analyze these data. Our results reveal frequent (442 unique peptides) and statistically significant C-terminal extensions for at least eight alleles, including the common HLA-A03:01, HLA-A31:01, and HLA-A68:01. High resolution crystal structure of HLA-A68:01 with such a ligand uncovers structural changes taking place to accommodate C-terminal extensions and helps unraveling sequence and structural properties predictive of the presence of these extensions. Scanning viral proteomes with the C-terminal extension motifs identifies many putative epitopes and we demonstrate direct recognition by human CD8+ T cells of a 10-mer epitope from cytomegalovirus predicted to follow the C-terminal extension binding mode.


Assuntos
Apresentação de Antígeno/imunologia , Epitopos de Linfócito T/imunologia , Antígenos HLA/imunologia , Fragmentos de Peptídeos/imunologia , Linfócitos T/imunologia , Algoritmos , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Ligantes , Ligação Proteica
14.
J Immunol ; 201(12): 3705-3716, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429286

RESUMO

HLA-I molecules bind short peptides and present them for recognition by CD8+ T cells. The length of HLA-I ligands typically ranges from 8 to 12 aa, but variability is observed across different HLA-I alleles. In this study we collected recent in-depth HLA peptidomics data, including 12 newly generated HLA peptidomes (31,896 unique peptides) from human meningioma samples, to analyze the peptide length distribution and multiple specificity across 84 different HLA-I alleles. We observed a clear clustering of HLA-I alleles with distinct peptide length distributions, which enabled us to study the structural basis of peptide length distributions and predict peptide length distributions from HLA-I sequences. We further identified multiple specificity in several HLA-I molecules and validated these observations with binding assays. Explicitly modeling peptide length distribution and multiple specificity improved predictions of naturally presented HLA-I ligands, as demonstrated in an independent benchmarking based on the new human meningioma samples.


Assuntos
Antígenos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Epitopos Imunodominantes/metabolismo , Meningioma/imunologia , Peptídeos/metabolismo , Alelos , Apresentação de Antígeno , Antígenos/genética , Biologia Computacional , Epitopos de Linfócito T/genética , Antígenos HLA/metabolismo , Humanos , Imunidade Celular , Epitopos Imunodominantes/genética , Ligantes , Modelos Químicos , Peptídeos/genética , Polimorfismo Genético , Ligação Proteica , Especificidade do Receptor de Antígeno de Linfócitos T
15.
Mol Cell Proteomics ; 17(3): 533-548, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242379

RESUMO

Comprehensive knowledge of the human leukocyte antigen (HLA) class-I and class-II peptides presented to T-cells is crucial for designing innovative therapeutics against cancer and other diseases. However methodologies for their purification for mass-spectrometry analysis have been a major limitation. We designed a novel high-throughput, reproducible and sensitive method for sequential immuno-affinity purification of HLA-I and -II peptides from up to 96 samples in a plate format, suitable for both cell lines and tissues. Our methodology drastically reduces sample-handling and can be completed within five hours. We challenged our methodology by extracting HLA peptides from multiple replicates of tissues (n = 7) and cell lines (n = 21, 108 cells per replicate), which resulted in unprecedented depth, sensitivity and high reproducibility (Pearson correlations up to 0.98 and 0.97 for HLA-I and HLA-II). Because of the method's achieved sensitivity, even single measurements of peptides purified from 107 B-cells resulted in the identification of more than 1700 HLA-I and 2200 HLA-II peptides. We demonstrate the feasibility of performing drug-screening by using ovarian cancer cells treated with interferon gamma (IFNγ). Our analysis revealed an augmented presentation of chymotryptic-like and longer ligands associated with IFNγ induced changes of the antigen processing and presentation machinery. This straightforward method is applicable for basic and clinical applications.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Interferon gama/farmacologia , Peptídeos/metabolismo , Linfócitos B/metabolismo , Linhagem Celular , Humanos , Ligantes , Neoplasias/metabolismo , Proteômica/métodos , Linfócitos T/metabolismo
16.
Mol Cell Proteomics ; 17(12): 2347-2357, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171158

RESUMO

Spliced peptides are short protein fragments spliced together in the proteasome by peptide bond formation. True estimation of the contribution of proteasome-spliced peptides (PSPs) to the global human leukocyte antigen (HLA) ligandome is critical. A recent study suggested that PSPs contribute up to 30% of the HLA ligandome. We performed a thorough reanalysis of the reported results using multiple computational tools and various validation steps and concluded that only a fraction of the proposed PSPs passes the quality filters. To better estimate the actual number of PSPs, we present an alternative workflow. We performed de novo sequencing of the HLA-peptide spectra and discarded all de novo sequences found in the UniProt database. We checked whether the remaining de novo sequences could match spliced peptides from human proteins. The spliced sequences were appended to the UniProt fasta file, which was searched by two search tools at a false discovery rate (FDR) of 1%. We find that 2-6% of the HLA ligandome could be explained as spliced protein fragments. The majority of these potential PSPs have good peptide-spectrum match properties and are predicted to bind the respective HLA molecules. However, it remains to be shown how many of these potential PSPs actually originate from proteasomal splicing events.


Assuntos
Biologia Computacional/métodos , Antígenos HLA/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína , Apresentação de Antígeno/fisiologia , Linhagem Celular Tumoral , Exoma , Humanos , Ligantes , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteoma , Transdução de Sinais , Espectrometria de Massas em Tandem , Sequenciamento do Exoma
17.
Nucleic Acids Res ; 46(D1): D1237-D1247, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28985418

RESUMO

Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts.


Assuntos
Bases de Dados Factuais , Antígenos HLA , Antígenos de Histocompatibilidade , Espectrometria de Massas , Alelos , Antígenos HLA/química , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/imunologia , Humanos , Internet , Espectrometria de Massas em Tandem , Interface Usuário-Computador
18.
Br J Cancer ; 120(4): 424-434, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30718808

RESUMO

BACKGROUND: Solid malignancies are frequently infiltrated with T cells. The success of adoptive cell transfer (ACT) with expanded tumour-infiltrating lymphocytes (TILs) in melanoma warrants its testing in other cancer types. In this preclinical study, we investigated whether clinical-grade TILs could be manufactured from ovarian cancer (OC) tumour specimens. METHODS: Thirty-four tumour specimens were obtained from 33 individual patients with OC. TILs were analysed for phenotype, antigen specificity and functionality. RESULTS: Minimally expanded TILs (Young TILs) were successfully established from all patients. Young TILs contained a high frequency of CD3+ cells with a variable CD4/CD8 ratio. TILs could be expanded to clinical numbers. Importantly, recognition of autologous tumour cells was demonstrated in TILs in >50% of the patients. We confirmed with mass spectrometry the presentation of multiple tumour antigens, including peptides derived from the cancer-testis antigen GAGE, which could be recognised by antigen-specific TILs. Antigen-specific TILs could be isolated and further expanded in vitro. CONCLUSION: These findings support the hypothesis that patients with OC can benefit from ACT with TILs and led to the initiation of a pilot clinical trial at our institution . TRIAL REGISTRATION: clinicaltrials.gov: NCT02482090.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/imunologia , Subpopulações de Linfócitos T/imunologia , Microambiente Tumoral , Transferência Adotiva , Relação CD4-CD8 , Feminino , Humanos , Imunofenotipagem , Interferon gama/farmacologia , Neoplasias Ovarianas/terapia
19.
Br J Cancer ; 120(8): 870, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30890776

RESUMO

Since the publication of this paper, the authors noticed that the funding information was not complete. The correct funding information is now shown in the Acknowledgements section. Acknowledgements The studies were supported by grants from the OvaCure Foundation, the Danish Cancer Society Research Foundation, the Anticancer Fund, Aase og Ejnar Danielsens Foundation and the Independent Research Fund Denmark (grant number DFF-4183-00597).

20.
J Transl Med ; 17(1): 391, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771601

RESUMO

BACKGROUND: Most ovarian cancer patients are diagnosed at a late stage with 85% of them relapsing after surgery and standard chemotherapy; for this reason, new treatments are urgently needed. Ovarian cancer has become a candidate for immunotherapy by reason of their expression of shared tumor-associated antigens (TAAs) and private mutated neoantigens (NeoAgs) and the recognition of the tumor by the immune system. Additionally, the presence of intraepithelial tumor infiltrating lymphocytes (TILs) is associated with improved progression-free and overall survival of patients with ovarian cancer. The aim of active immunotherapy, including vaccination, is to generate a new anti-tumor response and amplify an existing immune response. Recently developed NeoAgs-based cancer vaccines have the advantage of being more tumor specific, reducing the potential for immunological tolerance, and inducing robust immunogenicity. METHODS: We propose a randomized phase I/II study in patients with advanced ovarian cancer to compare the immunogenicity and to assess safety and feasibility of two personalized DC vaccines. After standard of care surgery and chemotherapy, patients will receive either a novel vaccine consisting of autologous DCs pulsed with up to ten peptides (PEP-DC), selected using an agnostic, yet personalized, epitope discovery algorithm, or a sequential combination of a DC vaccine loaded with autologous oxidized tumor lysate (OC-DC) prior to an equivalent PEP-DC vaccine. All vaccines will be administered in combination with low-dose cyclophosphamide. This study is the first attempt to compare the two approaches and to use NeoAgs-based vaccines in ovarian cancer in the adjuvant setting. DISCUSSION: The proposed treatment takes advantage of the beneficial effects of pre-treatment with OC-DC prior to PEP-DC vaccination, prompting immune response induction against a wide range of patient-specific antigens, and amplification of pre-existing NeoAgs-specific T cell clones. Trial registration This trial is already approved by Swissmedic (Ref.: 2019TpP1004) and will be registered at http://www.clinicaltrials.gov before enrollment opens.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Neoplasias Císticas, Mucinosas e Serosas/patologia , Neoplasias Císticas, Mucinosas e Serosas/terapia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Peptídeos/imunologia , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Feminino , Humanos , Gradação de Tumores , Estadiamento de Neoplasias , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa