Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 615(7954): 809-812, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36991192

RESUMO

Galaxy clusters are the most massive gravitationally bound structures in the Universe, comprising thousands of galaxies and pervaded by a diffuse, hot intracluster medium (ICM) that dominates the baryonic content of these systems. The formation and evolution of the ICM across cosmic time1 is thought to be driven by the continuous accretion of matter from the large-scale filamentary surroundings and energetic merger events with other clusters or groups. Until now, however, direct observations of the intracluster gas have been limited only to mature clusters in the later three-quarters of the history of the Universe, and we have been lacking a direct view of the hot, thermalized cluster atmosphere at the epoch when the first massive clusters formed. Here we report the detection (about 6σ) of the thermal Sunyaev-Zeldovich (SZ) effect2 in the direction of a protocluster. In fact, the SZ signal reveals the ICM thermal energy in a way that is insensitive to cosmological dimming, making it ideal for tracing the thermal history of cosmic structures3. This result indicates the presence of a nascent ICM within the Spiderweb protocluster at redshift z = 2.156, around 10 billion years ago. The amplitude and morphology of the detected signal show that the SZ effect from the protocluster is lower than expected from dynamical considerations and comparable with that of lower-redshift group-scale systems, consistent with expectations for a dynamically active progenitor of a local galaxy cluster.

2.
Mol Cell ; 67(6): 922-935.e5, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28918902

RESUMO

The mechanisms that link environmental and intracellular stimuli to mitochondrial functions, including fission/fusion, ATP production, metabolite biogenesis, and apoptosis, are not well understood. Here, we demonstrate that the nutrient-sensing mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates translation of mitochondrial fission process 1 (MTFP1) to control mitochondrial fission and apoptosis. Expression of MTFP1 is coupled to pro-fission phosphorylation and mitochondrial recruitment of the fission GTPase dynamin-related protein 1 (DRP1). Potent active-site mTOR inhibitors engender mitochondrial hyperfusion due to the diminished translation of MTFP1, which is mediated by translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Uncoupling MTFP1 levels from the mTORC1/4E-BP pathway upon mTOR inhibition blocks the hyperfusion response and leads to apoptosis by converting mTOR inhibitor action from cytostatic to cytotoxic. These data provide direct evidence for cell survival upon mTOR inhibition through mitochondrial hyperfusion employing MTFP1 as a critical effector of mTORC1 to govern cell fate decisions.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Dinaminas/genética , Dinaminas/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Transfecção
3.
Cereb Cortex ; 33(7): 4101-4115, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36205478

RESUMO

Synchronization of network oscillation in spatially distant cortical areas is essential for normal brain activity. Precision in synchronization between hemispheres depends on the axonal conduction velocity, which is determined by physical parameters of the axons involved, including diameter, and extent of myelination. To compare these parameters in long-projecting excitatory and inhibitory axons in the corpus callosum, we used genetically modified mice and virus tracing to separately label CaMKIIα expressing excitatory and GABAergic inhibitory axons. Using electron microscopy analysis, we revealed that (i) the axon diameters of excitatory fibers (myelinated axons) are significantly larger than those of nonmyelinated excitatory axons; (ii) the diameters of bare axons of excitatory myelinated fibers are significantly larger than those of their inhibitory counterparts; and (iii) myelinated excitatory fibers are significantly larger than myelinated inhibitory fibers. Also, the thickness of myelin ensheathing inhibitory axons is significantly greater than for excitatory axons, with the ultrastructure of the myelin around excitatory and inhibitory fibers also differing. We generated a computational model to investigate the functional consequences of these parameter divergences. Our simulations indicate that impulses through inhibitory and excitatory myelinated fibers reach the target almost simultaneously, whereas action potentials conducted by nonmyelinated axons reach target cells with considerable delay.


Assuntos
Axônios , Bainha de Mielina , Animais , Camundongos , Bainha de Mielina/fisiologia , Axônios/fisiologia , Potenciais de Ação/fisiologia , Microscopia Eletrônica , Corpo Caloso
4.
Nucleic Acids Res ; 50(19): 10801-10816, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35141754

RESUMO

RbgA is an essential protein for the assembly of the 50S subunit in Bacillus subtilis. Depletion of RbgA leads to the accumulation of the 45S intermediate. A strain expressing a RbgA variant with reduced GTPase activity generates spontaneous suppressor mutations in uL6. Each suppressor strain accumulates a unique 44S intermediate. We reasoned that characterizing the structure of these mutant 44S intermediates may explain why RbgA is required to catalyze the folding of the 50S functional sites. We found that in the 44S particles, rRNA helices H42 and H97, near the binding site of uL6, adopt a flexible conformation and allow the central protuberance and functional sites in the mutant 44S particles to mature in any order. Instead, the wild-type 45S particles exhibit a stable H42-H97 interaction and their functional sites always mature last. The dependence on RbgA was also less pronounced in the 44S particles. We concluded that the binding of uL6 pauses the maturation of the functional sites, but the central protuberance continues to fold. RbgA exclusively binds intermediates with a formed central protuberance and licenses the folding of the functional sites. Through this mechanism, RbgA ensures that the functional sites of the 50S mature last.


Ribosomal subunits in bacteria assemble according to energy landscapes comprised of multiple parallel pathways. In this study, the authors identified a critical maturation step in the late assembly stages of the large 50S ribosomal subunit in bacteria. This step represents a merging point where all parallel assembly pathways of the ribosomal particles converge. At this critical step, the convergent assembly intermediate that accumulates in cells exists in a 'locked' state, and its maturation is paused. The RbgA protein acts on this critical step to 'unlock' the last maturation steps involving folding of the functional sites. Through this mechanism, RbgA ensures that the functional sites of the 50S mature last.


Assuntos
Proteínas Ribossômicas , Subunidades Ribossômicas Maiores de Bactérias , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Proteínas Ribossômicas/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , RNA Ribossômico/metabolismo , GTP Fosfo-Hidrolases/metabolismo
5.
Nucleic Acids Res ; 49(1): 547-567, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330920

RESUMO

Genomic studies have indicated that certain bacterial lineages such as the Bacteroidetes lack Shine-Dalgarno (SD) sequences, and yet with few exceptions ribosomes of these organisms carry the canonical anti-SD (ASD) sequence. Here, we show that ribosomes purified from Flavobacterium johnsoniae, a representative of the Bacteroidetes, fail to recognize the SD sequence of mRNA in vitro. A cryo-electron microscopy structure of the complete 70S ribosome from F. johnsoniae at 2.8 Å resolution reveals that the ASD is sequestered by ribosomal proteins bS21, bS18 and bS6, explaining the basis of ASD inhibition. The structure also uncovers a novel ribosomal protein-bL38. Remarkably, in F. johnsoniae and many other Flavobacteriia, the gene encoding bS21 contains a strong SD, unlike virtually all other genes. A subset of Flavobacteriia have an alternative ASD, and in these organisms the fully complementary sequence lies upstream of the bS21 gene, indicative of natural covariation. In other Bacteroidetes classes, strong SDs are frequently found upstream of the genes for bS21 and/or bS18. We propose that these SDs are used as regulatory elements, enabling bS21 and bS18 to translationally control their own production.


Assuntos
Bacteroidetes/genética , Iniciação Traducional da Cadeia Peptídica , Sequências Reguladoras de Ácido Ribonucleico , Ribossomos/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Códon de Iniciação , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli/genética , Flavobacterium/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Puromicina/farmacologia , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , RNA Ribossômico 5S/genética , Ribossomos/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência , Especificidade da Espécie
6.
RNA ; 26(12): 2017-2030, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32989043

RESUMO

It is only after recent advances in cryo-electron microscopy that it is now possible to describe at high-resolution structures of large macromolecules that do not crystalize. Purified 30S subunits interconvert between an "active" and "inactive" conformation. The active conformation was described by crystallography in the early 2000s, but the structure of the inactive form at high resolution remains unsolved. Here we used cryo-electron microscopy to obtain the structure of the inactive conformation of the 30S subunit to 3.6 Å resolution and study its motions. In the inactive conformation, an alternative base-pairing of three nucleotides causes the region of helix 44, forming the decoding center to adopt an unlatched conformation and the 3' end of the 16S rRNA positions similarly to the mRNA during translation. Incubation of inactive 30S subunits at 42°C reverts these structural changes. The air-water interface to which ribosome subunits are exposed during sample preparation also peel off some ribosomal proteins. Extended exposures to low magnesium concentrations make the ribosomal particles more susceptible to the air-water interface causing the unfolding of large rRNA structural domains. Overall, this study provides new insights about the conformational space explored by the 30S ribosomal subunit when the ribosomal particles are free in solution.


Assuntos
Microscopia Crioeletrônica/métodos , Escherichia coli/metabolismo , Conformação de Ácido Nucleico , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Ribossomos/metabolismo , Sequência de Bases , Escherichia coli/ultraestrutura , RNA Ribossômico 16S/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Menores/ultraestrutura , Ribossomos/ultraestrutura
7.
Proc Natl Acad Sci U S A ; 116(40): 19930-19938, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527277

RESUMO

Cilia, the hair-like protrusions that beat at high frequencies to propel a cell or move fluid around are composed of radially bundled doublet microtubules. In this study, we present a near-atomic resolution map of the Tetrahymena doublet microtubule by cryoelectron microscopy. The map demonstrates that the network of microtubule inner proteins weaves into the tubulin lattice and forms an inner sheath. From mass spectrometry data and de novo modeling, we identified Rib43a proteins as the filamentous microtubule inner proteins in the protofilament ribbon region. The Rib43a-tubulin interaction leads to an elongated tubulin dimer distance every 2 dimers. In addition, the tubulin lattice structure with missing microtubule inner proteins (MIPs) by sarkosyl treatment shows significant longitudinal compaction and lateral angle change between protofilaments. These results are evidence that the MIPs directly affect and stabilize the tubulin lattice. It suggests that the doublet microtubule is an intrinsically stressed filament and that this stress could be manipulated in the regulation of ciliary waveforms.


Assuntos
Cílios/química , Proteínas dos Microtúbulos/química , Tetrahymena/química , Tubulina (Proteína)/química , Axonema/química , Microscopia Crioeletrônica , Citoesqueleto/química , Espectrometria de Massas , Microtúbulos/química , Simulação de Dinâmica Molecular , Paclitaxel/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Estresse Mecânico
8.
Nucleic Acids Res ; 47(19): 10414-10425, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31665744

RESUMO

Bacteria harbor a number GTPases that function in the assembly of the ribosome and are essential for growth. RbgA is one of these GTPases and is required for the assembly of the 50S subunit in most bacteria. Homologs of this protein are also implicated in the assembly of the large subunit of the mitochondrial and eukaryotic ribosome. We present here the cryo-electron microscopy structure of RbgA bound to a Bacillus subtilis 50S subunit assembly intermediate (45SRbgA particle) that accumulates in cells upon RbgA depletion. Binding of RbgA at the P site of the immature particle stabilizes functionally important rRNA helices in the A and P-sites, prior to the completion of the maturation process of the subunit. The structure also reveals the location of the highly conserved N-terminal end of RbgA containing the catalytic residue Histidine 9. The derived model supports a mechanism of GTP hydrolysis, and it shows that upon interaction of RbgA with the 45SRbgA particle, Histidine 9 positions itself near the nucleotide potentially acting as the catalytic residue with minimal rearrangements. This structure represents the first visualization of the conformational changes induced by an assembly factor in a bacterial subunit intermediate.


Assuntos
GTP Fosfo-Hidrolases/química , RNA Ribossômico/química , Proteínas Ribossômicas/química , Bacillus subtilis/química , Bacillus subtilis/genética , Microscopia Crioeletrônica , GTP Fosfo-Hidrolases/ultraestrutura , Hidrólise , Modelos Moleculares , Conformação Proteica , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Ribossomos/genética , Ribossomos/ultraestrutura
9.
Nucleic Acids Res ; 47(15): 8301-8317, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31265110

RESUMO

Assembly factors provide speed and directionality to the maturation process of the 30S subunit in bacteria. To gain a more precise understanding of how these proteins mediate 30S maturation, it is important to expand on studies of 30S assembly intermediates purified from bacterial strains lacking particular maturation factors. To reveal the role of the essential protein Era in the assembly of the 30S ribosomal subunit, we analyzed assembly intermediates that accumulated in Era-depleted Escherichia coli cells using quantitative mass spectrometry, high resolution cryo-electron microscopy and in-cell footprinting. Our combined approach allowed for visualization of the small subunit as it assembled and revealed that with the exception of key helices in the platform domain, all other 16S rRNA domains fold even in the absence of Era. Notably, the maturing particles did not stall while waiting for the platform domain to mature and instead re-routed their folding pathway to enable concerted maturation of other structural motifs spanning multiple rRNA domains. We also found that binding of Era to the mature 30S subunit destabilized helix 44 and the decoding center preventing binding of YjeQ, another assembly factor. This work establishes Era's role in ribosome assembly and suggests new roles in maintaining ribosome homeostasis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Homeostase , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Sequência de Bases , Sítios de Ligação , Microscopia Crioeletrônica , Proteínas de Escherichia coli/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Conformação de Ácido Nucleico , Ligação Proteica , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura
10.
J Struct Biol ; 208(1): 43-50, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31344437

RESUMO

Gram-negative bacteria evade the attack of cationic antimicrobial peptides through modifying their lipid A structure in their outer membranes with 4-amino-4-deoxy-L-arabinose (Ara4N). ArnA is a crucial enzyme in the lipid A modification pathway and its deletion abolishes the polymyxin resistance of gram-negative bacteria. Previous studies by X-ray crystallography have shown that full-length ArnA forms a three-bladed propeller-shaped hexamer. Here, the structures of ArnA determined by cryo-electron microscopy (cryo-EM) reveal that ArnA exists in two 3D architectures, hexamer and tetramer. This is the first observation of a tetrameric ArnA. The hexameric cryo-EM structure is similar to previous crystal structures but shows differences in domain movements and conformational changes. We propose that ArnA oligomeric states are in a dynamic equilibrium, where the hexamer state is energetically more favorable, and its domain movements are important for cooperating with downstream enzymes in the lipid A-Ara4N modification pathway. The results provide us with new possibilities to explore inhibitors targeting ArnA.


Assuntos
Microscopia Crioeletrônica/métodos , Polimixinas/química , Polimixinas/metabolismo , Bactérias/metabolismo , Cristalografia por Raios X
11.
Cell Biol Int ; 43(7): 820-834, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30958601

RESUMO

The pathological mechanism underlying glaucoma has always been a complex aspect of this permanently blinding disease but proteomic studies have been helpful in elucidating it to a great extent in several studies. This study was designed to evaluate the expression and to get an idea about the function of two novel markers (ligatin and fibulin-7) identified in human aqueous humor (hAH) in relation to glaucomatous progression. A significant increase in the protein content of glaucomatous hAH compared to that of non-glaucomatous controls (NG-Ctrls) was observed. Ligatin, fibulin-7, and its proteolysis were revealed in hAH of primary open angle glaucoma (POAG), primary angle closure glaucoma (PACG) and NG-Ctrls. Quantification confirmed no significant difference in expression of ligatin, whereas fibulin-7 was significantly (P < 0.05) low in hAH of PACG in comparison to NG-Ctrls and POAG. Importantly the immunohistochemical assay for both indicated their possible involvement in the maintenance of the appropriate structure of TM in vivo. Since oxidative stress is a major contributor to glaucomatous pathogenesis, in vitro analysis of nuclear and cytoplasmic fractions indicated intracellular changes in localization and expression of ligatin upon oxidative insult of human trabecular meshwork (TM) cells. While no such changes were found for fibulin-7 expression. This was also corroborated with the immunocytochemical assay. Though a study with a small sample size, this is the first report which confirms the presence of ligatin and fibulin-7 in hAH, quantified their differential expression, and indicated the possibility of their involvement in the maintenance of the TM structure.


Assuntos
Humor Aquoso/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Glaucoma de Ângulo Fechado/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Proteínas de Membrana/metabolismo , Malha Trabecular/metabolismo , Idoso , Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Progressão da Doença , Feminino , Glaucoma de Ângulo Fechado/patologia , Glaucoma de Ângulo Aberto/patologia , Humanos , Pessoa de Meia-Idade , Estresse Oxidativo , Proteólise , Proteômica
12.
Nano Lett ; 16(8): 4779-87, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27280476

RESUMO

Hydrogels composed of two-dimensional (2D) nanomaterials have become an important alternative to replace traditional inorganic scaffolds for tissue engineering. Here, we describe a novel nanocrystalline material with 2D morphology that was synthesized by tuning the crystallization of the sodium-magnesium-phosphate system. We discovered that the sodium ion can regulate the precipitation of magnesium phosphate by interacting with the crystal's surface causing a preferential crystal growth that results in 2D morphology. The 2D nanomaterial gave rise to a physical hydrogel that presented extreme thixotropy, injectability, biocompatibility, bioresorption, and long-term stability. The nanocrystalline material was characterized in vitro and in vivo and we discovered that it presented unique biological properties. Magnesium phosphate nanosheets accelerated bone healing and osseointegration by enhancing collagen formation, osteoblasts differentiation, and osteoclasts proliferation through up-regulation of COL1A1, RunX2, ALP, OCN, and OPN. In summary, the 2D magnesium phosphate nanosheets could bring a paradigm shift in the field of minimally invasive orthopedic and craniofacial interventions because it is the only material available that can be injected through high gauge needles into bone defects in order to accelerate bone healing and osseointegration.

13.
J Virol ; 89(24): 12441-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423955

RESUMO

UNLABELLED: Positive-strand RNA [(+) RNA] viruses remodel cellular membranes to facilitate virus replication and assembly. In the case of turnip mosaic virus (TuMV), the viral membrane protein 6K2 plays an essential role in endomembrane alterations. Although 6K2-induced membrane dynamics have been widely studied by confocal microscopy, the ultrastructure of this remodeling has not been extensively examined. In this study, we investigated the formation of TuMV-induced membrane changes by chemical fixation and high-pressure freezing/freeze substitution (HPF/FS) for transmission electron microscopy at different times of infection. We observed the formation of convoluted membranes connected to rough endoplasmic reticulum (rER) early in the infection process, followed by the production of single-membrane vesicle-like (SMVL) structures at the midstage of infection. Both SMVL and double-membrane vesicle-like structures with electron-dense cores, as well as electron-dense bodies, were found late in the infection process. Immunogold labeling results showed that the vesicle-like structures were 6K2 tagged and suggested that only the SMVL structures were viral RNA replication sites. Electron tomography (ET) was used to regenerate a three-dimensional model of these vesicle-like structures, which showed that they were, in fact, tubules. Late in infection, we observed filamentous particle bundles associated with electron-dense bodies, which suggests that these are sites for viral particle assembly. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. Our work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation. IMPORTANCE: Positive-strand RNA viruses remodel cellular membranes for different stages of the infection process, such as protein translation and processing, viral RNA synthesis, particle assembly, and virus transmission. The ultrastructure of turnip mosaic virus (TuMV)-induced membrane remodeling was investigated over several days of infection. The first change that was observed involved endoplasmic reticulum-connected convoluted membrane accumulation. This was followed by the formation of single-membrane tubules, which were shown to be viral RNA replication sites. Later in the infection process, double-membrane tubular structures were observed and were associated with viral particle bundles. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. This work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation.


Assuntos
Retículo Endoplasmático , Membranas Intracelulares , Nicotiana , Tymovirus , Vacúolos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tymovirus/genética , Tymovirus/metabolismo , Tymovirus/ultraestrutura , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Vacúolos/virologia
14.
J Am Chem Soc ; 137(19): 6124-7, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25915443

RESUMO

Cellulose nanocrystals (CNCs), derived from cellulose, provide us with an opportunity to devise more sustainable solutions to current technological challenges. Enantioselective catalysis, especially heterogeneous, is the preferred method for the synthesis of pure chiral molecules in the fine chemical industries. Cellulose has been long sought as a chiral inducer in enantioselective catalysis. We report herein an unprecedentedly high enantiomeric excess (ee) for Pd patches deposited onto CNCs used as catalysts for the hydrogenation of prochiral ketones in water at room temperature and 4 bar H2. Our system, where CNCs acted as support and sole chiral source, achieved an ee of 65% with 100% conversions. Cryo-electron microscopy, high-resolution transmission electron microscopy, and tomography were used for the first time to study the 3D structure of a metal functionalized CNC hybrid. It established the presence of sub-nanometer-thick Pd patches at the surface of CNCs and provided insight into the chiral induction mechanism.


Assuntos
Celulose/química , Cetonas/química , Nanopartículas/química , Paládio/química , Catálise , Hidrogenação , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Estereoisomerismo
15.
J Neurosci ; 33(8): 3390-401, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426667

RESUMO

The locus coeruleus (LC), the main source of brain noradrenalin (NA), modulates cortical activity, cerebral blood flow (CBF), glucose metabolism, and blood-brain barrier permeability. However, the role of the LC-NA system in the regulation of cortical CBF has remained elusive. This rat study shows that similar proportions (∼20%) of cortical pyramidal cells and GABA interneurons are contacted by LC-NA afferents on their cell soma or proximal dendrites. LC stimulation induced ipsilateral activation (c-Fos upregulation) of pyramidal cells and of a larger proportion (>36%) of interneurons that colocalize parvalbumin, somatostatin, or nitric oxide synthase compared with pyramidal cells expressing cyclooxygenase-2 (22%, p < 0.05) or vasoactive intestinal polypeptide-containing interneurons (16%, p < 0.01). Concurrently, LC stimulation elicited larger ipsilateral compared with contralateral increases in cortical CBF (52 vs 31%, p < 0.01). These CBF responses were almost abolished (-70%, p < 0.001) by cortical NA denervation with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] and were significantly reduced by α- and ß-adrenoceptor antagonists (-40%, p < 0.001 and -30%, p < 0.05, respectively). Blockade of glutamatergic or GABAergic neurotransmission with NMDA or GABA(A) receptor antagonists potently reduced the LC-induced hyperemic response (-56%, p < 0.001 or -47%, p < 0.05). Moreover, inhibition of astroglial metabolism (-35%, p < 0.01), vasoactive epoxyeicosatrienoic acids (EETs; -60%, p < 0.001) synthesis, large-conductance, calcium-operated (BK, -52%, p < 0.05), and inward-rectifier (Kir, -40%, p < 0.05) K+ channels primarily impaired the hyperemic response. The data demonstrate that LC stimulation recruits a broad network of cortical excitatory and inhibitory neurons resulting in increased cortical activity and that K+ fluxes and EET signaling mediate a large part of the hemodynamic response.


Assuntos
Córtex Cerebral/fisiologia , Circulação Cerebrovascular/fisiologia , Locus Cerúleo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/fisiologia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Locus Cerúleo/irrigação sanguínea , Locus Cerúleo/citologia , Masculino , Rede Nervosa/irrigação sanguínea , Rede Nervosa/citologia , Ratos , Ratos Sprague-Dawley
16.
Cancers (Basel) ; 15(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831425

RESUMO

In the present study, we show that the inhibitor of the apoptosis-stimulating protein of p53 (iASPP) physically interacts with the hyaluronan receptor CD44 in normal and transformed cells. We noticed that the CD44 standard isoform (CD44s), but not the variant isoform (CD44v), bound to iASPP via the ankyrin-binding domain in CD44s. The formation of iASPP-CD44s complexes was promoted by hyaluronan stimulation in fibroblasts but not in epithelial cells. The cellular level of p53 affected the amount of the iASPP-CD44 complex. iASPP was required for hyaluronan-induced CD44-dependent migration and adhesion of fibroblasts. Of note, CD44 altered the sub-cellular localization of the iASPP-p53 complex; thus, ablation of CD44 promoted translocation of iASPP from the nucleus to the cytoplasm, resulting in increased formation of a cytoplasmic iASPP-p53 complex in fibroblasts. Overexpression of iASPP decreased, but CD44 increased the level of intracellular reactive oxygen species (ROS). Knock-down of CD44s, in the presence of p53, led to increased cell growth and cell density of fibroblasts by suppression of p27 and p53. Our observations suggest that the balance of iASPP-CD44 and iASPP-p53 complexes affect the survival and migration of fibroblasts.

17.
Cell Biol Int ; 36(11): 1021-7, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22775755

RESUMO

Oxidative stress induced by serum starvation and H2O2 exposure, both triggers apoptosis in retinal neuronal cell line RGC-5 (retinal ganglion cell-5). We have examined whether, despite excess generation of ROS (reactive oxygen species) and apoptosis induction, there is any dissimilarity in nuclear morphology and apoptotic signalling pathway in RGC-5 under these conditions. Sub-confluent cells were treated either with H2O2 or maintained in SFM (serum-free medium). ROS level was detected along with nuclear morphology and ultrastructural analysis. Generation of excess intracellular ROS, nuclear localization of Bax and caspase 3 activation along with decrease of cellular viability, confirmed apoptosis induction in RGC-5 by 72 h serum starvation and 500 M H2O2 exposure for 1 h. Nuclear swelling as supported by nuclear cytoplasmic ratio and conspicuous black spots with nuclear remodelling were observed only upon SFM, but not with H2O2 treatment. Serum starvation did not alter JNK1 (c-Jun N-terminal kinase 1) expression, although nuclear translocation and higher level of pJNK (phospho-JNK) was evident. Conversely, H2O2 exposure blocked the expression and activation of JNK1 to phospho-JNK as a negligible level of pJNK was present in the cytoplasm. Despite similar ROS generation in both the conditions, difference in nuclear morphology and JNK1 expression leads to the hypothesis that RGC-5 cells may follow different signalling pathways when challenged with serum starvation and H2O2.


Assuntos
Apoptose , Núcleo Celular/ultraestrutura , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Estresse Oxidativo , Neurônios Retinianos/citologia , Transporte Ativo do Núcleo Celular , Animais , Caspase 3/metabolismo , Diferenciação Celular , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Forma do Núcleo Celular , Proliferação de Células , Sobrevivência Celular , Reprogramação Celular , Meios de Cultura Livres de Soro/metabolismo , Citoplasma/enzimologia , Citoplasma/metabolismo , Ativação Enzimática , Peróxido de Hidrogênio/efeitos adversos , Sistema de Sinalização das MAP Quinases , Microscopia Eletrônica de Varredura , Fosforilação , Ratos , Espécies Reativas de Oxigênio/metabolismo , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/enzimologia , Soro/metabolismo , Proteína X Associada a bcl-2/metabolismo
18.
Nat Commun ; 12(1): 573, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495475

RESUMO

The biological identity of nanoparticles (NPs) is established by their interactions with a wide range of biomolecules around their surfaces after exposure to biological media. Understanding the true nature of the biomolecular corona (BC) in its native state is, therefore, essential for its safe and efficient application in clinical settings. The fundamental challenge is to visualize the biomolecules within the corona and their relationship/association to the surface of the NPs. Using a synergistic application of cryo-electron microscopy, cryo-electron tomography, and three-dimensional reconstruction, we revealed the unique morphological details of the biomolecules and their distribution/association with the surface of polystyrene NPs at a nanoscale resolution. The analysis of the BC at a single NP level and its variability among NPs in the same sample, and the discovery of the presence of nonspecific biomolecules in plasma residues, enable more precise characterization of NPs, improving predictions of their safety and efficacies.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Plasma/química , Poliestirenos/química , Simulação por Computador , Humanos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Transmissão/métodos , Coroa de Proteína/química , Reprodutibilidade dos Testes
19.
J Neurosci Methods ; 170(2): 212-9, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18321591

RESUMO

Revealing the connections of neuronal systems is critical for understanding how they function. The vast majority of neurons in all cortical areas consist of excitatory cells whose activity is controlled by inhibitory cells. Distribution and projection patterns of inhibitory and excitatory cells are key information to understand the organization of the nervous system. To investigate axonal projections, we developed a method to uniquely distinguish excitatory axons from inhibitory ones in the cortex using transgenic mice expressing Cre recombinase in the Ca2+/calmodulin-dependent protein kinase IIalpha-containing neurons. These animals were injected by an adenoviral vector engineered so that it directs red fluorescent protein expression in non-Cre-expressing cells, and green fluorescent protein in Cre-positive neurons. We demonstrated in vitro and in vivo that GFP-expressing neurons are GABA-immunonegative (excitatory), while the RFP-expressing cells are either GABAergic neurons or glial cells. One week after the viral vector injection RFP and GFP signals overlapped in a subset of cells but after 1 month, the two signals showed total segregation. Six months post-inoculation, GFP-labelling was clearly visible in axons but RFP remained only in somata and proximal dendrites. This technique can thus be used to differentiate excitatory axonal projections from inhibitory ones, and represent a unique tool in neuronal circuit analysis.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Adenoviridae/genética , Animais , Axônios/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/citologia , Vetores Genéticos , Glutamatos/fisiologia , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido gama-Aminobutírico/fisiologia , Proteína Vermelha Fluorescente
20.
Sci Adv ; 4(3): eaar3219, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725615

RESUMO

Avian (and formerly dinosaur) eggshells form a hard, protective biomineralized chamber for embryonic growth-an evolutionary strategy that has existed for hundreds of millions of years. We show in the calcitic chicken eggshell how the mineral and organic phases organize hierarchically across different length scales and how variation in nanostructure across the shell thickness modifies its hardness, elastic modulus, and dissolution properties. We also show that the nanostructure changes during egg incubation, weakening the shell for chick hatching. Nanostructure and increased hardness were reproduced in synthetic calcite crystals grown in the presence of the prominent eggshell protein osteopontin. These results demonstrate the contribution of nanostructure to avian eggshell formation, mechanical properties, and dissolution.


Assuntos
Carbonato de Cálcio/química , Galinhas/metabolismo , Casca de Ovo/química , Fenômenos Mecânicos , Nanoestruturas/química , Osteopontina/química , Animais , Casca de Ovo/ultraestrutura , Nanoestruturas/ultraestrutura , Osteopontina/ultraestrutura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa