Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39408551

RESUMO

In order to control pathogenic microorganisms, three polymer compositions were prepared and tested. First, a water-soluble positively charged polycomplex was synthesized via the electrostatic binding of anionic polyacrylic acid to an excess of polyethylenimine to enhance the biocidal activity of the polycation. Second, an aqueous solution of AgNO3 was added to the polycomplex, thus forming a ternary polycation-polyanion-Ag1+ complex with an additional antimicrobial effect. Third, the resulting ternary complex was subjected to UV irradiation, which ensured the conversion of Ag1+ ions into Ag nanoparticles ranging in size mainly from 10 to 20 nm. Aqueous solutions of the polymer compositions were added to suspensions of the Gram-positive bacteria S. aureus and the Gram-negative bacteria P. aeruginosa, with the following main results: (a) Upon the addition of the binary polycomplex, 30% or more of the cells survived after 20 h. (b) The ternary complex killed S. aureus bacteria but was ineffective against P. aeruginosa bacteria. (c) When the ternary complex with Ag nanoparticles was added, the percentage of surviving cells of both types did not exceed 0.03%. The obtained results are valuable for the development of antibacterial formulations.

2.
Antibiotics (Basel) ; 11(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35052878

RESUMO

Food products may be a source of Salmonella, one of the main causal agents of food poisoning, especially after the emergence of strains resistant to antimicrobial preparations. The present work dealt with investigation of the occurrence of resistance to antimicrobial preparations among S. enterica strains isolated from food. The isolates belonged to 11 serovars, among which Infantis (28%), Enteritidis (19%), and Typhimurium (13.4%) predominated. The isolates were most commonly resistant to trimethoprim/sulfamethoxazole (n = 19, 59.38%), cefazolin (n = 15, 46.86%), tetracycline (n = 13, 40.63%), and amikacin (n = 9, 28.13%). Most of the strains (68.75%) exhibited multiple resistance to commonly used antibiotics. High-throughput sequencing was used to analyse three multidrug-resistant strains (resistant to six or more antibiotics). Two of them (SZL 30 and SZL 31) belonged to S. Infantis, while one strain belonged to S. Typhimurium (SZL 38). Analysis of the genomes of the sequenced strains revealed the genes responsible for antibiotic resistance. In the genomes of strains SZL 30 and SZL 31 the genes of antibiotic resistance were shown to be localized mostly in integrons within plasmids, while most of the antibiotic resistance genes of strain SZL 38 were localized in a chromosomal island (17,949 nt). Genomes of the Salmonella strains SZL 30, SZL 31, and SZL 38 were shown to contain full-size pathogenicity islands: SPI-1, SPI-2, SPI-4, SPI-5, SPI-9, SPI-11, SPI-13, SPI-14, and CS54. Moreover, the genome of strain SZL 38 was also found to contain the full-size pathogenicity islands SPI-3, SPI-6, SPI-12, and SPI-16. The emergence of multidrug-resistant strains of various Salmonella serovars indicates that further research on the transmission pathways for these genetic determinants and monitoring of the distribution of these microorganisms are necessary.

3.
Antibiotics (Basel) ; 10(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34680788

RESUMO

Susceptibility of 117 L. monocytogenes strains isolated during three time periods (1950-1980; 2000-2005, and 2018-2021) to 23 antibiotics was tested by the disk diffusion method. All strains were sensitive to aminoglycosides (gentamicin, kanamycin, neomycin, streptomycin), glycopeptides (vancomycin and teicoplanin), clarithromycin, levofloxacin, amoxicillin/clavulanic acid, and trimethoprim/sulfamethoxazole. Resistance to clindamycin was observed in 35.5% of strains. Resistance to carbapenems, imipenem and meropenem was found in 4% and 5% of strains, respectively. Resistance to erythromycin, penicillin G, trimethoprim, and ciprofloxacin was found in 4%, 3%, 3%, and 2.5% of strains, respectively. Resistance to tylosin, ampicillin, enrofloxacin, linezolid, chloramphenicol, and tetracycline was found in less than 2%. Three strains with multiple antibiotic resistance and 12 strains with resistance to two antibiotics were revealed. Comparison of strains isolated in different time periods showed that the percentage of resistant strains was the lowest among strains isolated before 1980, and no strains with multiple antibiotic resistance were found among them. Statistical analysis demonstrated that the temporal evolution of resistance in L. monocytogenes has an antibiotic-specific character. While resistance to some antibiotics such as ampicillin and penicillin G has gradually decreased in the population, resistance to other antibiotics acquired by particular strains in recent years has not been accompanied by changes in resistance of other strains.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa