Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Appl Clin Med Phys ; 22(8): 6-15, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34318570

RESUMO

PURPOSE: Medical physics staffing models require periodic review due to the rapid evolution of technology and clinical techniques in radiation oncology. We present an update to a grid-based physics staffing algorithm for radiation oncology (originally published in 2012) that has been widely used in Canada over the last decade. MATERIALS AND METHODS: The physics staffing algorithm structure was modified to improve the clarity and consistency of input data. We collected information on clinical procedures, equipment inventory, and teaching activities from 15 radiation treatment centers in the province of Ontario from April 1, 2018, to March 31, 2019. Using these data sets, the algorithm's weighting parameters were adjusted to align the prediction of full-time equivalent (FTE) personnel with actual staffing levels in Ontario. The algorithm computes FTE estimates for medical physicists, physics assistants, engineering (electrical and mechanical), and information technology (IT) support. The performance of the algorithm was also tested in eight Canadian cancer centers outside of Ontario. RESULTS: The mean difference between the algorithm and actual staffing for the 23 Canadian cancer centers did not exceed 0.5 FTE for any staffing group. The results were slightly better in Ontario than in other provinces, as expected since the algorithm was optimized using Ontario data. There was a linear correlation between the algorithm predictions and the number of annual-treated cases for physicists, and physicists plus physics assistants. For other staff categories, the algorithm weighting parameters were not significantly altered, except for a reduction in mechanical engineering staff. Comparison with other published models suggests that the updated algorithm should be considered as a minimum recommended staffing level for the clinical support of radiation oncology programs. CONCLUSIONS: We support the use of grid-based physics staffing algorithms that account for clinical workload with flexibility to adapt to local conditions with variable academic and research demands.


Assuntos
Radioterapia (Especialidade) , Algoritmos , Canadá , Física Médica , Humanos , Física , Recursos Humanos
2.
J Appl Clin Med Phys ; 19(2): 249-257, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29479821

RESUMO

PURPOSE: In this work, we propose a new method of calibrating cone beam computed tomography (CBCT) data sets for radiotherapy dose calculation and plan assessment. The motivation for this patient-specific calibration (PSC) method is to develop an efficient, robust, and accurate CBCT calibration process that is less susceptible to deformable image registration (DIR) errors. METHODS: Instead of mapping the CT numbers voxel-by-voxel with traditional DIR calibration methods, the PSC methods generates correlation plots between deformably registered planning CT and CBCT voxel values, for each image slice. A linear calibration curve specific to each slice is then obtained by least-squares fitting, and applied to the CBCT slice's voxel values. This allows each CBCT slice to be corrected using DIR without altering the patient geometry through regional DIR errors. A retrospective study was performed on 15 head-and-neck cancer patients, each having routine CBCTs and a middle-of-treatment re-planning CT (reCT). The original treatment plan was re-calculated on the patient's reCT image set (serving as the gold standard) as well as the image sets produced by voxel-to-voxel DIR, density-overriding, and the new PSC calibration methods. Dose accuracy of each calibration method was compared to the reference reCT data set using common dose-volume metrics and 3D gamma analysis. A phantom study was also performed to assess the accuracy of the DIR and PSC CBCT calibration methods compared with planning CT. RESULTS: Compared with the gold standard using reCT, the average dose metric differences were ≤ 1.1% for all three methods (PSC: -0.3%; DIR: -0.7%; density-override: -1.1%). The average gamma pass rates with thresholds 3%, 3 mm were also similar among the three techniques (PSC: 95.0%; DIR: 96.1%; density-override: 94.4%). CONCLUSIONS: An automated patient-specific calibration method was developed which yielded strong dosimetric agreement with the results obtained using a re-planning CT for head-and-neck patients.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/normas , Neoplasias de Cabeça e Pescoço/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Calibragem , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Prognóstico , Dosagem Radioterapêutica , Estudos Retrospectivos
3.
J Appl Clin Med Phys ; 18(6): 79-87, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28901659

RESUMO

During radiation therapy of head and neck cancer, the decision to consider replanning a treatment because of anatomical changes has significant resource implications. We developed an algorithm that compares cone-beam computed tomography (CBCT) image pairs and provides an automatic alert as to when remedial action may be required. Retrospective CBCT data from ten head and neck cancer patients that were replanned during their treatment was used to train the algorithm on when to recommend a repeat CT simulation (re-CT). An additional 20 patients (replanned and not replanned) were used to validate the predictive power of the algorithm. CBCT images were compared in 3D using the gamma index, combining Hounsfield Unit (HU) difference with distance-to-agreement (DTA), where the CBCT study acquired on the first fraction is used as the reference. We defined the match quality parameter (MQPx ) as a difference between the xth percentiles of the failed-pixel histograms calculated from the reference gamma comparison and subsequent comparisons, where the reference gamma comparison is taken from the first two CBCT images acquired during treatment. The decision to consider re-CT was based on three consecutive MQP values being less than or equal to a threshold value, such that re-CT recommendations were within ±3 fractions of the actual re-CT order date for the training cases. Receiver-operator characteristic analysis showed that the best trade-off in sensitivity and specificity was achieved using gamma criteria of 3 mm DTA and 30 HU difference, and the 80th percentile of the failed-pixel histogram. A sensitivity of 82% and 100% was achieved in the training and validation cases, respectively, with a false positive rate of ~30%. We have demonstrated that gamma analysis of CBCT-acquired anatomy can be used to flag patients for possible replanning in a manner consistent with local clinical practice guidelines.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Raios gama , Neoplasias de Cabeça e Pescoço/patologia , Radioterapia Guiada por Imagem/métodos , Algoritmos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Prognóstico , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
4.
J Appl Clin Med Phys ; 13(1): 3704, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22231223

RESUMO

The January 2010 articles in The New York Times generated intense focus on patient safety in radiation treatment, with physics staffing identified frequently as a critical factor for consistent quality assurance. The purpose of this work is to review our experience with medical physics staffing, and to propose a transparent and flexible staffing algorithm for general use. Guided by documented times required per routine procedure, we have developed a robust algorithm to estimate physics staffing needs according to center-specific workload for medical physicists and associated support staff, in a manner we believe is adaptable to an evolving radiotherapy practice. We calculate requirements for each staffing type based on caseload, equipment inventory, quality assurance, educational programs, and administration. Average per-case staffing ratios were also determined for larger-scale human resource planning and used to model staffing needs for Ontario, Canada over the next 10 years. The workload specific algorithm was tested through a survey of Canadian cancer centers. For center-specific human resource planning, we propose a grid of coefficients addressing specific workload factors for each staff group. For larger scale forecasting of human resource requirements, values of 260, 700, 300, 600, 1200, and 2000 treated cases per full-time equivalent (FTE) were determined for medical physicists, physics assistants, dosimetrists, electronics technologists, mechanical technologists, and information technology specialists, respectively.


Assuntos
Algoritmos , Física Médica/estatística & dados numéricos , Seleção de Pessoal/estatística & dados numéricos , Admissão e Escalonamento de Pessoal/estatística & dados numéricos , Radioterapia (Especialidade)/estatística & dados numéricos , Ontário , Seleção de Pessoal/tendências , Admissão e Escalonamento de Pessoal/tendências , Radioterapia (Especialidade)/tendências , Recursos Humanos
5.
Med Phys ; 47(4): 1558-1565, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32027381

RESUMO

PURPOSE: In a recent article, our group proposed a fast direct aperture optimization (DAO) algorithm for fixed-gantry intensity-modulated radiation therapy (IMRT) called fast inverse direct aperture optimization (FIDAO). When tested on fixed-gantry IMRT plans, we observed up to a 200-fold increase in the optimization speed. Compared to IMRT, rotational volumetric-modulated arc therapy (VMAT) is a much larger optimization problem and has many more delivery constraints. The purpose of this work is to extend and evaluate FIDAO for inverse planning of VMAT plans. METHODS: A prototype FIDAO algorithm for VMAT treatment planning was developed in MATLAB using the open-source treatment planning toolkit matRad (v2.2 dev_VMAT build). VMAT treatment plans using one 3600 arc were generated on the AAPM TG-119 phantom, as well as sample clinical liver and prostate cases. The plans were created by first performing fluence map optimization on 28° equispaced beams, followed by aperture sequencing and arc sequencing with a gantry angular sampling rate of 4°. After arc sequencing, a copy of the plan underwent DAO using the prototype FIDAO algorithm, while another copy of the plan underwent DAO using matRad's DAO method, which served as the conventional algorithm. RESULTS: Both algorithms achieved similar plan quality, although the FIDAO plans had considerably fewer hot spots in the unspecified normal tissue. The optimization time (number of iterations) for FIDAO and the conventional DAO algorithm, respectively, were: 65 s (245) vs 602 s (275) in the TG-119 phantom case; 25 s (85) vs 803 s (159) in the liver case; and 99 s (174) vs 754 s (149) in the prostate case. CONCLUSIONS: This study demonstrated promising speed enhancements in using FIDAO for the direct aperture optimization of VMAT plans.


Assuntos
Algoritmos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada , Fatores de Tempo
6.
Med Phys ; 46(3): 1127-1139, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30592539

RESUMO

PURPOSE: The goal of this work was to develop and evaluate a fast inverse direct aperture optimization (FIDAO) algorithm for IMRT treatment planning and plan adaptation. METHODS: A previously proposed fluence map optimization algorithm called fast inverse dose optimization (FIDO) was extended to optimize the aperture shapes and weights of IMRT beams. FIDO is a very fast fluence map optimization algorithm for IMRT that finds the global minimum using direct matrix inversion without unphysical negative beam weights. In this study, an equivalent second-order Taylor series expansion of the FIDO objective function was used, which allowed for the objective function value and gradient vector to be computed very efficiently during direct aperture optimization, resulting in faster optimization. To evaluate the speed gained with FIDAO, a proof-of-concept algorithm was developed in MATLAB using an interior-point optimization method to solve the reformulated aperture-based FIDO problem. The FIDAO algorithm was used to optimize four step-and-shoot IMRT cases: on the AAPM TG-119 phantom as well as a liver, prostate, and head-and-neck clinical cases. Results were compared with a conventional DAO algorithm that uses the same interior-point method but using the standard formulation of the objective function and its gradient vector. RESULTS: A substantial gain in optimization speed was obtained with the prototype FIDAO algorithm compared to the conventional DAO algorithm while producing plans of similar quality. The optimization time (number of iterations) for the prototype FIDAO algorithm vs the conventional DAO algorithm was 0.3 s (17) vs 56.7 s (50); 2.0 s (28) vs 134.1 s (57); 2.5 s (26) vs 180.6 s (107); and 6.7 s (20) vs 469.4 s (482) in the TG-119 phantom, liver, prostate, and head-and-neck examples, respectively. CONCLUSIONS: A new direct aperture optimization algorithm based on FIDO was developed. For the four IMRT test cases examined, this algorithm executed approximately 70-200 times faster without compromising the IMRT plan quality.


Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias Hepáticas/radioterapia , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/normas , Humanos , Masculino , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos
7.
Phys Med Biol ; 53(18): 5029-43, 2008 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-18723930

RESUMO

Ion chamber dosimetry requires a high degree of precision, at all steps within the dosimetric process, in order to ensure accurate dose measurements. This work presents a novel technique for ion chamber volume determination and quality assurance, using micro-computed tomography (micro-CT). Four nominally identical Exradin A1SL chambers (0.056 cm(3)) (Standard Imaging, WI, USA) were imaged using a micro-CT system (GE Locus, GE Healthcare, London, Ontario) and irradiated in a 6 MV x-ray reference field. Air volumes were calculated from the CT datasets using 3D analysis software (Microview 2.1.1, General Electric Healthcare, London, Ontario). Differences in the volumes of each chamber determined using micro-CT images agreed with differences in the ionization response within 1% for each chamber. Calibration coefficients were then compared through cross-calibration with a calibrated ion chamber and from the CT-measured volumes. The average ratio of these values was found to be 0.958 +/- 0.009 indicating good correlation. The results demonstrate the promise of using micro-CT imaging for the absolute volumetric characterization of ion chambers. The images have the potential to be an important clinical tool for quality assurance of ion chamber construction and integrity after routine clinical usage.


Assuntos
Análise de Falha de Equipamento/métodos , Análise de Falha de Equipamento/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiometria/instrumentação , Radiometria/normas , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/normas , Canadá , Desenho de Equipamento , Garantia da Qualidade dos Cuidados de Saúde/métodos , Doses de Radiação
8.
Med Phys ; 34(1): 352-65, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17278521

RESUMO

The purpose of this study is to evaluate a geometric image guidance strategy that simultaneously correct for various inter-fractional rigid and nonrigid geometric uncertainties in an on-line environment, using field shape corrections (called the "MU-MLC" technique). The effectiveness of this strategy was compared with two other simpler on-line image guidance strategies that are more commonly used in the clinic. To this end, five prostate cancer patients, with at least 15 treatment CT studies each, were analyzed. The prescription dose was set to the maximum dose that did not violate the rectum and bladder dose-volume constraints, and hence, was unique to each patient. Deformable image registration and dose-tracking was performed on each CT image to obtain the cumulative treatment dose distributions. From this, maximum, minimum, and mean dose, as well as generalized equivalent uniform dose (gEUD) were calculated for each image guidance strategy. As expected, some dosimetric differences in the clinical target volume (CTV) were observed between the three image guidance strategies investigated. For example, up to +/-2% discrepancy in prostate minimum dose were observed among the techniques. Of them, only the "MU -MLC" technique did not reduce the prostate minimum dose for all patients (i.e., > or = 100%). However, the differences were clinically not significant to indicate the preference of one strategy over another, when using a uniform 5 mm margin size. For the organ-at-risks (OARs), the large rectum sparing effect (< or =5.7 Gy, gEUD) and bladder overdosing effect (< or = 16 Gy, gEUD) were observed. This was likely due to the use of bladder contrast during CT simulation studies which was not done during the treatment CT studies. Therefore, ultimately, strategies to maintain relatively constant rectum and bladder volumes, throughout the treatment course, are required to minimize this effect. In conclusion, the results here suggest that simple translational corrections based on three-dimensional (3D) images is adequate to maintain target coverage, for margin sizes at least as large as 5 mm. In addition, due to large fluctuations in OAR volumes, innovative image guidance strategies are needed to minimize dose and maintain consistent sparing during the whole course of radiation therapy.


Assuntos
Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino , Dosagem Radioterapêutica , Eficiência Biológica Relativa
9.
Phys Med Biol ; 52(4): 1119-34, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17264374

RESUMO

Accurate imaging is a prerequisite for adaptive radiation therapy of mobile tumours. We present an evaluation of the performance of slow computed tomography (CT) for mapping and delineating the excursion boundary of a moving object using a tumour phantom scanned with the helical MVCT scanner of a tomotherapy unit. A spherical test object driven by sinusoidal motion in both the lateral and cranial-caudal directions was used to determine how well MVCT images depict the true envelope of the motion. Such information is useful in interpreting the CT images relative to the static object case when radiotherapy gating is to be used or in determining the internal target volume (ITV) when beam gating is not possible. A computer simulation of the CT imaging process was developed which incorporates the third generation fan beam geometry and helical acquisition technique of the tomotherapy MVCT system. Motion artefacts are mainly characterized by the parameter alpha=Tgantry/Trespiration which is interpreted as the period of the gantry rotation (Tgantry) in units of the respiratory period (Trespiration). Experimental tests were performed using a fixed gantry period of 10 s per full rotation and respiratory period ranging from 4.0 (alpha=2.5) to 1.0 (alpha=10) s. These cases represent typical clinical imaging conditions on the tomotherapy unit, as well as an extreme test case where the gantry period is intentionally set to be much greater than the respiratory period (termed an 'ultra-slow' scan). The accuracy of target (ITV) delineation is evaluated by comparing volumes generated using iso-density contours on the MVCT images to the true motion envelope, known a priori in this phantom study. As expected, motion artefacts are present in clinical MVCT images and they are not averaged over the slow gantry period of rotation. Furthermore, artefacts are not significantly affected by scanning with different helical pitch values. Greater distortions from the true density distribution are observed for lateral motion compared to cranial-caudal motion. Volumes generated by iso-density contours yield better agreement with the motion envelope for scans performed under ultra-slow conditions (alpha=10) compared to typical clinical imaging conditions (alpha=2.5). If the MVCT gantry cannot be rotated very quickly due to engineering constraints in order to achieve ultra-fast CT, we suggest an opposite approach as an interim measure for mapping the ITV. Adjusting MVCT scan conditions to a very slow acquisition (alpha=10) may be a good compromise for determining the ITV for non-gated adaptive tomotherapy of moving lung tumours.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Movimento , Intensificação de Imagem Radiográfica/métodos , Radioterapia Assistida por Computador/métodos , Mecânica Respiratória , Simulação por Computador , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/instrumentação , Radioterapia Assistida por Computador/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Phys Med Biol ; 62(7): 2636-2657, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28253198

RESUMO

Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.


Assuntos
Lasers , Imagens de Fantasmas , Tomografia Óptica/métodos , Tomografia Computadorizada por Raios X/instrumentação , Artefatos , Humanos , Radiometria/métodos , Radioterapia de Intensidade Modulada , Tomografia Computadorizada por Raios X/métodos
12.
Med Phys ; 44(12): 6678-6689, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29072308

RESUMO

PURPOSE: Iterative CT reconstruction algorithms are gaining popularity as GPU-based computation becomes more accessible. These algorithms are desirable in x-ray CT for their ability to achieve similar image quality at a fraction of the dose required for standard filtered backprojection reconstructions. In optical CT dosimetry, the noise reduction capability of such algorithms is similarly desirable because noise has a detrimental effect on the precision of dosimetric analysis, and can create misleading test results. In this study, we evaluate an iterative CT reconstruction algorithm for gel dosimetry, with special attention to the challenging dosimetry of small fields. METHODS: An existing ordered subsets convex algorithm using total variation minimization regularization (OSC-TV) was implemented. Three datasets, which represent the extreme cases of gel dosimetry, were examined: a large, 15 cm diameter uniform phantom, a 1.35 cm diameter finger phantom, and a 15 cm gel dosimeter irradiated with 3 × 3, 2 × 2, 1 × 1, and 0.6 × 0.6 cm fields. These were scanned on an in-house scanning laser system, and reconstructed with both filtered backprojection and OSC-TV with a range of regularization constants. The contrast to artifact + noise ratio (CANR) and penumbra width measurements (80% to 20% and 95% to 5% distances) were used to compare reconstructions. RESULTS: Our results showed that OSC-TV can achieve 3-5× improvement in contrast to artifact + noise ratio compared to filtered backprojection, while preserving the shape of steep dose gradients. For very small objects (≤ 0.6 × 0.6 cm fields in a 16 × 16 cm field of view), the mean value in the center of the object can be suppressed if the regularization constant is improperly set, which must be avoided. CONCLUSIONS: Overall, the results indicate that OSC-TV is a suitable reconstruction algorithm for gel dosimetry, provided care is taken in setting the regularization parameter when reconstructing objects that are small compared to the scanner field of view.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Radiometria/instrumentação , Tomografia Computadorizada por Raios X , Imagens de Fantasmas
13.
Int J Radiat Oncol Biol Phys ; 64(1): 289-300, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16377417

RESUMO

PURPOSE: To quantify the mitigation of geometric uncertainties achieved with the application of various patient setup techniques during the delivery of hypofractionated prostate cancer treatments, using tumor control probability (TCP) and normal tissue complication probability. METHODS AND MATERIALS: Five prostate cancer patients with approximately 16 treatment CT studies, taken during the course of their radiation therapy (77 total), were analyzed. All patients were planned twice with an 18 MV six-field conformal technique, with 10- and 5-mm margin sizes, with various hypofractionation schedules (5 to 35 fractions). Subsequently, four clinically relevant patient setup techniques (laser guided and image guided) were simulated to deliver such schedules. RESULTS: As hypothesized, the impact of geometric uncertainties on clinical outcomes increased with more hypofractionated schedules. However, the absolute gain in TCP due to hypofractionation (up to 21.8% increase) was significantly higher compared with the losses due to geometric uncertainties (up to 8.6% decrease). CONCLUSIONS: The results of this study suggest that, although the impact of geometric uncertainties on the treatment outcomes increases as the number of fractions decrease, the reduction in TCP due to the uncertainties does not significantly offset the expected theoretical gain in TCP by hypofractionation.


Assuntos
Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Conformacional/normas , Tomografia Computadorizada por Raios X , Fracionamento da Dose de Radiação , Humanos , Lasers , Masculino , Probabilidade , Neoplasias da Próstata/diagnóstico por imagem , Radiobiologia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos
14.
Int J Radiat Oncol Biol Phys ; 65(2): 595-607, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16690441

RESUMO

PURPOSE: To evaluate the image-guidance capabilities of megavoltage computed tomography (MVCT), this article compares the interobserver and intraobserver contouring uncertainty in kilovoltage computed tomography (KVCT) used for radiotherapy planning with MVCT acquired with helical tomotherapy. METHODS AND MATERIALS: Five prostate-cancer patients were evaluated. Each patient underwent a KVCT and an MVCT study, a total of 10 CT studies. For interobserver variability analysis, four radiation oncologists, one physicist, and two radiation therapists (seven observers in total) contoured the prostate and seminal vesicles (SV) in the 10 studies. The intraobserver variability was assessed by asking all observers to repeat the contouring of 1 patient's KVCT and MVCT studies. Quantitative analysis of contour variations was performed by use of volumes and radial distances. RESULTS: The interobserver and intraobserver contouring uncertainty was larger in MVCT compared with KVCT. Observers consistently segmented larger volumes on MVCT where the ratio of average prostate and SV volumes was 1.1 and 1.2, respectively. On average (interobserver and intraobserver), the local delineation variability, in terms of standard deviations [Deltasigma = radical(sigma2MVCT-sigma2KVCT)], increased by 0.32 cm from KVCT to MVCT. CONCLUSIONS: Although MVCT was inferior to KVCT for prostate delineation, the application of MVCT in prostate radiotherapy remains useful.


Assuntos
Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Glândulas Seminais/diagnóstico por imagem , Tomografia Computadorizada Espiral , Humanos , Masculino , Variações Dependentes do Observador , Neoplasias da Próstata/radioterapia , Radiologia Intervencionista , Planejamento da Radioterapia Assistida por Computador/métodos , Incerteza
15.
Med Phys ; 33(11): 3997-4004, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17153379

RESUMO

Accurate small-field dosimetry has become important with the use of multiple small fields in modern radiotherapy treatments such as IMRT and stereotactic radiosurgery. In this study, we investigate the response of a set of prototype plane-parallel ionization chambers, based upon the Exradin T11 chamber, with active volume diameters of 2, 4, 10, and 20 mm, exposed to 6 MV stereotactic radiotherapy x-ray fields. Our goal was to assess their usefulness for accurate small x-ray field dose measurements. The relative ionization response was measured in circular fields (0.5 to 4 cm diameter) as compared to a 10 x 10 cm2 reference field. A large discrepancy (approximately 40%) was found between the relative response in the smallest plane-parallel chamber and other small volume dosimeters (radiochromic film, micro-metal-oxide-semiconductor field-effect transistor and diode) used for comparison. Monte Carlo BEAMnrc simulations were used to simulate the experimental setup in order to investigate the cause of the under-response and to calculate appropriate correction factors that could be applied to experimental measurements. It was found that in small fields, the air cavity of these custom-made research chambers perturbed the secondary electron fluence profile significantly, resulting in decreased fluence within the active volume, which in turn produces a chamber under-response. It is demonstrated that a large correction to the p(fl) correction factor would be required to improve dosimetric accuracy in small fields, and that these factors could be derived using Monte Carlo simulations.


Assuntos
Radiometria/instrumentação , Raios X , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Radiometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Med Phys ; 43(8): 4585, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27487875

RESUMO

PURPOSE: The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using a scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. METHODS: A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level "step-dose" pattern. RESULTS: With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a "cupping" artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. CONCLUSIONS: The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.


Assuntos
Radiometria/instrumentação , Radiometria/métodos , Tomografia Óptica/métodos , Algoritmos , Artefatos , Radioisótopos de Cobalto , Desenho de Equipamento , Lasers de Gás , Imagens de Fantasmas , Refratometria , Tomografia Óptica/instrumentação , Viscosidade , Água
17.
Phys Med Biol ; 61(7): 2910-25, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26988107

RESUMO

Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1 ± 2)% between mean values over a wide range from 0.036 to 0.43 cm(-1). For the finger phantom, agreement is found with a maximum deviation of (4 ± 2)% between mean values over a range of 0.1-0.47 cm(-1). With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Luz , Tomografia Computadorizada de Feixe Cônico/instrumentação , Imagens de Fantasmas , Radiometria/métodos , Refratometria
18.
Phys Med Biol ; 61(7): 2893-909, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26988028

RESUMO

Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light's spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Luz , Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/métodos , Sensibilidade e Especificidade
19.
Radiother Oncol ; 119(2): 331-6, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27041142

RESUMO

PURPOSE: Recently our group developed a unified intensity-modulated arc therapy (UIMAT) technique which allows for the simultaneous inverse-optimization and the combined delivery of volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). The aim of this study was to evaluate the dosimetric benefits of UIMAT plans for radiation treatment of complex head-and-neck cancer cases. METHODS AND MATERIALS: A retrospective treatment planning study was performed on 30 head-and-neck cases, 15 of which were treated clinically with VMAT while the other 15 were treated with step-and-shoot IMRT. These cases were re-planned using our UIMAT technique and the results were compared with the clinically delivered plans. Plans were assessed in terms of clinically relevant metrics describing target volume coverage, dose conformity, and the sparing of organs at risk. RESULTS: When compared to stand-alone VMAT or IMRT, UIMAT plans offered slightly better tumor volume coverage (Median D95: 98.1% vs. 97.5%, p=0.01) and similar dose conformity (Median CI: 0.69 vs. 0.69, p=0.09). More significantly, UIMAT plans had substantially lower doses to all organs at risk, including the spinal cord (Median D2%: 29.9Gy vs. 35.6Gy, p<0.01), brainstem (Median D2%: 21.2Gy vs. 25.6Gy, p<0.01), left parotid (Median DMean: 26.1Gy vs. 28.0Gy, p<0.01), and right parotid (Median DMean: 23.6Gy vs. 27.2Gy, p<0.01). The reduction in OAR doses did not result from the redistribution of dose to unspecified tissue. Furthermore, UIMAT plans can be delivered with comparable delivery times to VMAT (Median time: 135s vs. 168s, p=0.394) but with fewer monitor units (Median MU: 486 vs. 635, p<0.01). CONCLUSIONS: Compared to stand-alone IMRT or VMAT, UIMAT was demonstrated to have a dosimetric advantage for the radiation treatment of head-and-neck cancer.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia de Intensidade Modulada/métodos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Órgãos em Risco , Glândula Parótida/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Carga Tumoral
20.
Med Phys ; 42(2): 726-34, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25652486

RESUMO

PURPOSE: To study the feasibility of unified intensity-modulated arc therapy (UIMAT) which combines intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) optimization and delivery to produce superior radiation treatment plans, both in terms of dose distribution and efficiency of beam delivery when compared with either VMAT or IMRT alone. METHODS: An inverse planning algorithm for UIMAT was prototyped within the pinnacle treatment planning system (Philips Healthcare). The IMRT and VMAT deliveries are unified within the same arc, with IMRT being delivered at specific gantry angles within the arc. Optimized gantry angles for the IMRT and VMAT phases are assigned automatically by the inverse optimization algorithm. Optimization of the IMRT and VMAT phases is done simultaneously using a direct aperture optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using a unified optimization technique and compared with clinical IMRT or VMAT plans. Delivery verification was performed with an ArcCheck phantom (Sun Nuclear) on a Varian TrueBeam linear accelerator (Varian Medical Systems). RESULTS: In this prototype implementation, the UIMAT plans offered the same target dose coverage while reducing mean doses to organs at risk by 8.4% for head-and-neck cases, 5.7% for lung cases, and 3.5% for prostate cases, compared with the VMAT or IMRT plans. In addition, UIMAT can be delivered with similar efficiency as VMAT. CONCLUSIONS: In this proof-of-concept work, a novel radiation therapy optimization and delivery technique that interlaces VMAT or IMRT delivery within the same arc has been demonstrated. Initial results show that unified VMAT/IMRT has the potential to be superior to either standard IMRT or VMAT.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos de Viabilidade , Humanos , Masculino , Neoplasias/radioterapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa