Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932309

RESUMO

During the multi-dose formulation development of recombinant vaccine candidates, protein antigens can be destabilized by antimicrobial preservatives (APs). The degradation mechanisms are often poorly understood since available analytical tools are limited due to low protein concentrations and the presence of adjuvants. In this work, we evaluate different analytical approaches to monitor the structural integrity of HPV16 VLPs adsorbed to Alhydrogel™ (AH) in the presence and absence of APs (i.e., destabilizing m-cresol, MC, or non-destabilizing chlorobutanol, CB) under accelerated conditions (pH 7.4, 50 °C). First, in vitro potency losses displayed only modest correlations with the results from two commonly used methods of protein analysis (SDS-PAGE, DSC). Next, results from two alternative analytical approaches provided a better understanding of physicochemical events occurring under these same conditions: (1) competitive ELISA immunoassays with a panel of mAbs against conformational and linear epitopes on HPV16 VLPs and (2) LC-MS peptide mapping to evaluate the accessibility/redox state of the 12 cysteine residues within each L1 protein comprising the HPV16 VLP (i.e., with 360 L1 proteins per VLP, there are 4320 Cys residues per VLP). These methods expand the limited analytical toolset currently available to characterize AH-adsorbed antigens and provide additional insights into the molecular mechanism(s) of AP-induced destabilization of vaccine antigens.

2.
J Pharm Sci ; 112(2): 458-470, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462710

RESUMO

This work describes Part 2 of multi-dose formulation development of a Human Papillomavirus (HPV) Virus-Like Particle (VLP) based vaccine (see Part 1 in companion paper). Storage stability studies with candidate multi-dose formulations containing individual or combinations of seven different antimicrobial preservatives (APs) were performed with quadrivalent HPV VLP (6, 11, 16, 18) antigens adsorbed to aluminum-salt adjuvant (Alhydrogel®). Real-time (up to two years, 2-8°C) and accelerated (months at 25 and 40°C) stability studies identified eight lead candidates as measured by antigen stability (competitive ELISA employing conformational serotype-specific mAbs), antimicrobial effectiveness (modified European Pharmacopeia assay), total protein content (SDS-PAGE), and AP concentration (RP-UHPLC). The AH-adsorbed HPV18 VLP component was most sensitive to AP-induced destabilization. Optimal quadrivalent antigen storage stability while maintaining antimicrobial effectiveness was observed with 2-phenoxyethanol, benzyl alcohol, chlorobutanol, and 2-phenoxyethanol + benzyl alcohol combination. Interestingly, for single-AP containing multi-dose formulations, this rank-ordering of storage stability did not correlate with previously reported biophysical measurements of AP-induced antigen destabilization. Moreover, other APs (e.g., m-cresol, phenol, parabens) described by others for inclusion in multi-dose HPV VLP formulations showed suboptimal stability. These results suggest that each HPV VLP vaccine candidate (e.g., different serotypes, expression systems, processes, adjuvants) will require customized multi-dose formulation development.


Assuntos
Anti-Infecciosos , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Papillomavirus Humano , Anticorpos Antivirais , Infecções por Papillomavirus/prevenção & controle , Conservantes Farmacêuticos , Adjuvantes Imunológicos , Álcoois Benzílicos
3.
J Pharm Sci ; 112(2): 446-457, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36096284

RESUMO

The development of multi-dose, subunit vaccine formulations can be challenging since antimicrobial preservatives (APs) often destabilize protein antigens. In this work, we evaluated Human Papillomavirus (HPV) Virus-Like Particles (VLPs) to determine if combining different APs used in approved parenteral products, each at lower concentrations than used alone, would maintain both antimicrobial effectiveness and antigen stability. To identify promising AP combinations, two different screening strategies were utilized: (1) empirical one-factor-at-a-time (OFAT) and (2) statistical design-of-experiments (DOE). Seven different APs were employed to screen for two- and three-AP combinations using high-throughput methods for antimicrobial effectiveness (i.e., microbial growth inhibition assay and a modified European Pharmacopeia method) and antigen stability (i.e., serotype-specific mAb binding to conformational epitopes of HPV6, 11, 16 VLPs by ELISA). The OFAT and DOE approaches were complementary, such that initial OFAT results (and associated lessons learned) were subsequently employed to optimize the combinations using DOE. Additional validation experiments confirmed the final selection of top AP-combinations predicted by DOE modeling. Overall, 20 candidate multi-dose formulations containing two- or three-AP combinations were down-selected. As described in Part 2 (companion paper), long-term storage stability profiles of aluminum-adjuvanted, quadrivalent HPV VLP formulations containing these lead candidate AP combinations are compared to single APs.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Humanos , Papillomavirus Humano , Infecções por Papillomavirus/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/química , Adjuvantes Imunológicos , Conservantes Farmacêuticos , Anticorpos Antivirais
4.
Vaccine ; 41(5): 1108-1118, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36610932

RESUMO

There is a continued need for sarbecovirus vaccines that can be manufactured and distributed in low- and middle-income countries (LMICs). Subunit protein vaccines are manufactured at large scales at low costs, have less stringent temperature requirements for distribution in LMICs, and several candidates have shown protection against SARS-CoV-2. We previously reported an engineered variant of the SARS-CoV-2 Spike protein receptor binding domain antigen (RBD-L452K-F490W; RBD-J) with enhanced manufacturability and immunogenicity compared to the ancestral RBD. Here, we report a second-generation engineered RBD antigen (RBD-J6) with two additional mutations to a hydrophobic cryptic epitope in the RBD core, S383D and L518D, that further improved expression titers and biophysical stability. RBD-J6 retained binding affinity to human convalescent sera and to all tested neutralizing antibodies except antibodies that target the class IV epitope on the RBD core. K18-hACE2 transgenic mice immunized with three doses of a Beta variant of RBD-J6 displayed on a virus-like particle (VLP) generated neutralizing antibodies (nAb) to nine SARS-CoV-2 variants of concern at similar levels as two doses of Comirnaty. The vaccinated mice were also protected from challenge with Alpha or Beta SARS-CoV-2. This engineered antigen could be useful for modular RBD-based subunit vaccines to enhance manufacturability and global access, or for further development of variant-specific or broadly acting booster vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Epitopos/genética , SARS-CoV-2/genética , COVID-19/prevenção & controle , Soroterapia para COVID-19 , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Camundongos Transgênicos
5.
J Pharm Sci ; 111(11): 2983-2997, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35914546

RESUMO

Introducing multi-dose formulations of Human Papillomavirus (HPV) vaccines will reduce costs and enable improved global vaccine coverage, especially in low- and middle-income countries. This work describes the development of key analytical methods later utilized for HPV vaccine multi-dose formulation development. First, down-selection of physicochemical methods suitable for multi-dose formulation development of four HPV (6, 11, 16, and 18) Virus-Like Particles (VLPs) adsorbed to an aluminum adjuvant (Alhydrogel®, AH) was performed. The four monovalent AH-adsorbed HPV VLPs were then characterized using these down-selected methods. Second, stability-indicating competitive ELISA assays were developed using HPV serotype-specific neutralizing mAbs, to monitor relative antibody binding profiles of the four AH-adsorbed VLPs during storage. Third, concentration-dependent preservative-induced destabilization of HPV16 VLPs was demonstrated by addition of eight preservatives found in parenterally administered pharmaceuticals and vaccines, as measured by ELISA, dynamic light scattering, and differential scanning calorimetry. Finally, preservative stability and effectiveness in the presence of vaccine components were evaluated using a combination of RP-UHPLC, a microbial growth inhibition assay, and a modified version of the European Pharmacopoeia assay (Ph. Eur. 5.1.3). Results are discussed in terms of analytical challenges encountered to identify and develop high-throughput methods that facilitate multi-dose formulation development of aluminum-adjuvanted protein-based vaccine candidates.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Adjuvantes Imunológicos , Alumínio , Hidróxido de Alumínio , Anticorpos Antivirais , Humanos , Papillomaviridae , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/química , Preparações Farmacêuticas , Vacinas Combinadas
6.
mSphere ; 7(4): e0024322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35968964

RESUMO

The ongoing COVID-19 pandemic has contributed largely to the global vaccine disparity. Development of protein subunit vaccines can help alleviate shortages of COVID-19 vaccines delivered to low-income countries. Here, we evaluated the efficacy of a three-dose virus-like particle (VLP) vaccine composed of hepatitis B surface antigen (HBsAg) decorated with the receptor binding domain (RBD) from the Wuhan or Beta SARS-CoV-2 strain adjuvanted with either aluminum hydroxide (alum) or squalene in water emulsion (SWE). RBD HBsAg vaccines were compared to the standard two doses of Pfizer mRNA vaccine. Alum-adjuvanted vaccines were composed of either HBsAg conjugated with Beta RBD alone (ß RBD HBsAg+Al) or a combination of both Beta RBD HBsAg and Wuhan RBD HBsAg (ß/Wu RBD HBsAg+Al). RBD vaccines adjuvanted with SWE were formulated with Beta RBD HBsAg (ß RBD HBsAg+SWE) or without HBsAg (ß RBD+SWE). Both alum-adjuvanted RBD HBsAg vaccines generated functional RBD IgG against multiple SARS-CoV-2 variants of concern (VOC), decreased viral RNA burden, and lowered inflammation in the lung against Alpha or Beta challenge in K18-hACE2 mice. However, only ß/Wu RBD HBsAg+Al was able to afford 100% survival to mice challenged with Alpha or Beta VOC. Furthermore, mice immunized with ß RBD HBsAg+SWE induced cross-reactive neutralizing antibodies against major VOC of SARS-CoV-2, lowered viral RNA burden in the lung and brain, and protected mice from Alpha or Beta challenge similarly to mice immunized with Pfizer mRNA. However, RBD+SWE immunization failed to protect mice from VOC challenge. Our findings demonstrate that RBD HBsAg VLP vaccines provided similar protection profiles to the approved Pfizer mRNA vaccines used worldwide and may offer protection against SARS-CoV-2 VOC. IMPORTANCE Global COVID-19 vaccine distribution to low-income countries has been a major challenge of the pandemic. To address supply chain issues, RBD virus-like particle (VLP) vaccines that are cost-effective and capable of large-scale production were developed and evaluated for efficacy in preclinical mouse studies. We demonstrated that RBD-VLP vaccines protected K18-hACE2 mice against Alpha or Beta challenge similarly to Pfizer mRNA vaccination. Our findings showed that the VLP platform can be utilized to formulate immunogenic and efficacious COVID-19 vaccines.


Assuntos
COVID-19 , Vacinas de Partículas Semelhantes a Vírus , Compostos de Alúmen , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Emulsões , Antígenos de Superfície da Hepatite B/genética , Humanos , Melfalan , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , RNA Mensageiro , RNA Viral , SARS-CoV-2 , Esqualeno , Vacinas Sintéticas , Água , gama-Globulinas , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa