Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 15(8): 587-590, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30065368

RESUMO

We describe Quanti.us , a crowd-based image-annotation platform that provides an accurate alternative to computational algorithms for difficult image-analysis problems. We used Quanti.us for a variety of medium-throughput image-analysis tasks and achieved 10-50× savings in analysis time compared with that required for the same task by a single expert annotator. We show equivalent deep learning performance for Quanti.us-derived and expert-derived annotations, which should allow scalable integration with tailored machine learning algorithms.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Software , Algoritmos , Animais , Biologia Computacional/métodos , Crowdsourcing/métodos , Humanos , Imageamento Tridimensional/métodos , Internet , Aprendizado de Máquina
2.
Biol Open ; 7(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30037883

RESUMO

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa