RESUMO
We experimentally and theoretically investigate the thermal conductivity and mechanical properties of polycrystalline HKUST-1 metal-organic frameworks (MOFs) infiltrated with three guest molecules: tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), and (cyclohexane-1,4-diylidene)dimalononitrile (H4-TCNQ). This allows for modification of the interaction strength between the guest and host, presenting an opportunity to study the fundamental atomic scale mechanisms of how guest molecules impact the thermal conductivity of large unit cell porous crystals. The thermal conductivities of the guest@MOF systems decrease significantly, by on average a factor of 4, for all infiltrated samples as compared to the uninfiltrated, pristine HKUST-1. This reduction in thermal conductivity goes in tandem with an increase in density of 38% and corresponding increase in heat capacity of â¼48%, defying conventional effective medium scaling of thermal properties of porous materials. We explore the origin of this reduction by experimentally investigating the guest molecules' effects on the mechanical properties of the MOF and performing atomistic simulations to elucidate the roles of the mass and bonding environments on thermal conductivity. The reduction in thermal conductivity can be ascribed to an increase in vibrational scattering introduced by extrinsic guest-MOF collisions as well as guest molecule-induced modifications to the intrinsic vibrational structure of the MOF in the form of hybridization of low frequency modes that is concomitant with an enhanced population of localized modes. The concentration of localized modes and resulting reduction in thermal conductivity do not seem to be significantly affected by the mass or bonding strength of the guest species.
RESUMO
Metal-oxide (MO) semiconductor gas sensors based on chemical resistivity necessarily involve making electrical contacts to the sensing materials. These contacts are imperfect and introduce errors into the measurements. In this paper, we demonstrate the feasibility of using contactless broadband dielectric spectroscopy (BDS)-based metrology in gas monitoring that avoids distortions in the reported resistivity values due to probe use, and parasitic errors (i.e. tool-measurand interactions). Specifically, we show how radio frequency propagation characteristics can be applied to study discrete processes on MO sensing material, such as zinc oxide (i.e. ZnO) surfaces, when exposed to a redox-active gas. Specifically, we have used BDS to investigate the initial oxidization of ZnO gas sensing material in air at temperatures below 200 °C, and to show that the technique affords new mechanistic insights that are inaccessible with the traditional resistance-based measurements.
RESUMO
To combat the large variability problem in RRAM, current compliance elements are commonly used to limit the in-rush current during the forming operation. Regardless of the compliance element (1R-1R or 1T-1R), some degree of current overshoot is unavoidable. The peak value of the overshoot current is often used as a predictive metric of the filament characteristics and is linked to the parasitic capacitance of the test structure. The reported detrimental effects of higher parasitic capacitance seem to support this concept. However, this understanding is inconsistent with the recent successes of compliance-free ultra-short pulse forming which guarantees a maximum peak overshoot current. We use detailed circuit analysis and experimental measurements of 1R-1R and 1T-1R structures to show that the peak overshoot is independent of the parasitic capacitance while the overshoot duration is strongly dependent on the parasitic capacitance. Forming control can be achieved, in ultra-short pulse forming, since the overshoot duration is always less than the applied pulse duration. The demonstrated success of ultra-short pulse forming becomes easier to reconcile after identifying the importance of overshoot duration.
RESUMO
Carbon is inherently abundant in nature and relatively inexpensive, which can potentially reduce the manufacturing cost of solar cells. In recent years, carbon has been used as a hole transport layer or counter electrode in perovskite solar cells. Herein, we demonstrate that carbon can also be used as a charge transport layer capable of enhancing the energy conversion efficiency of a CH3NH3PbI3-xClx solar cell when carbon is combined with PCBM. Particularly, we have been able to deposit an ultra-flat carbon layer using an e-beam irradiation method, which exhibited much better conductivity than the competitive PCBM/C60 layer. In addition, quantitative analysis of interfacial charge dynamics shows that the quenching efficiency of PCBM/carbon is comparable to that of PCBM/C60 but better interface defect passivation and improved series and shunt resistances were observed when PCBM/carbon was employed. For the photovoltaic performance, the reference perovskite solar cell fabricated from the widely used PCBM/C60 has a power conversion efficiency (PCE) of 14% while the perovskite solar cell with PCBM/carbon has an increased PCE of 16%. Our results demonstrate the potential of the use of cost-effective carbon for perovskite solar cells, which could reduce production costs.
RESUMO
The stochastic nature of the conductive filaments in oxide-based resistive memory (RRAM) represents a sizeable impediment to commercialization. As such, program-verify methodologies are highly alluring. However, it was recently shown that program-verify methods are unworkable due to strong resistance state relaxation after SET/RESET programming. In this paper, we demonstrate that resistance state relaxation is not the main culprit. Instead, it is fluctuation-induced false-reading (triggering) that defeats the program-verify method, producing a large distribution tail immediately after programming. The fluctuation impact on the verify mechanism has serious implications on the overall write/erase speed of RRAM.
RESUMO
Direct characterization of the capacitance and interface states is very important for understanding the electronic properties of a nanowire transistor. However, the capacitance of a single nanowire is too small to precisely measure. In this work we have fabricated metal-oxide-semiconductor capacitors based on a large array of self-assembled Si nanowires. The capacitance and conductance of the nanowire array capacitors are directly measured and the interface state profile is determined by using the conductance method. We demonstrate that the nanowire array capacitor is an effective platform for studying the electronic properties of nanoscale interfaces. This approach provides a useful and efficient metrology for the study of the physics and device properties of nanoscale metal-oxide-semiconductor structures.
RESUMO
This investigation on metal-organic framework (MOF) HUKUST-1 films focuses on comparing the undoped pristine state and with the case of doping by TCNQ infiltration of the MOF pore structure. We have determined the temperature dependent charge transport andp-type conductivity for HKUST-1 films. Furthermore, the electrical conductivity and the current-voltage characteristics have been characterized in detail. Because the most common forms of MOFs, bulk MOF powders, do not lend themselves easily to electrical characterization investigations, here in this study the electrical measurements were performed on dense, compact surface-anchored metal-organic framework (SURMOF) films. These monolithic, well-defined, and (001) preferentially oriented MOF thin films are grown using quasi-liquid phase epitaxy (LPE) on specially functionalized silicon or borosilicate glass substrates. In addition to the pristine SURMOF films also the effect of loading these porous thin films with TCNQ has been investigated. Positive charge carrier conduction and a strong anisotropy in electrical conduction was observed for highly oriented SURMOF films and corroborated with Seebeck coefficient measurements. Van der Pauw four-point Hall sample measurements provide important insight into the electrical behavior of such porous and hybrid organic-inorganic crystalline materials, which renders them attractive for potential use in microelectronic and optoelectronic devices and thermoelectric applications.
RESUMO
For the first time, a procedure has been established for the growth of surface-anchored metal-organic framework (SURMOF) copper(II) benzene-1,4-dicarboxylate (Cu-BDC) thin films of thickness control with single molecule accuracy. For this, we exploit the novel method solution atomic layer deposition (sALD). The sALD growth rate has been determined at 4.5 Å per cycle. The compact and dense SURMOF films grown at room temperature by sALD possess a vastly superior film thickness uniformity than those deposited by conventional solution-based techniques, such as dipping and spraying while featuring clear crystallinity from 100 nm thickness. The highly controlled layer-by-layer growth mechanism of sALD proves crucial to prevent unwanted side reactions such as Ostwald ripening or detrimental island growth, ensuring continuous Cu-BDC film coverage. This successful demonstration of sALD-grown compact continuous Cu-BDC SURMOF films is a paradigm change and provides a key advancement enabling a multitude of applications that require continuous and ultrathin coatings while maintaining tight film thickness specifications, which were previously unattainable with conventional solution-based growth methods.
RESUMO
We report the fabrication, characterization and simulation of Si nanowire SONOS-like non-volatile memory with HfO(2) charge trapping layers of varying thicknesses. The memory cells, which are fabricated by self-aligning in situ grown Si nanowires, exhibit high performance, i.e. fast program/erase operations, long retention time and good endurance. The effect of the trapping layer thickness of the nanowire memory cells has been experimentally measured and studied by simulation. As the thickness of HfO(2) increases from 5 to 30 nm, the charge trap density increases as expected, while the program/erase speed and retention remain the same. These data indicate that the electric field across the tunneling oxide is not affected by HfO(2) thickness, which is in good agreement with simulation results. Our work also shows that the Omega gate structure improves the program speed and retention time for memory applications.
RESUMO
Thermoelectrics is a green renewable energy technology which can significantly contribute to power generation due to its potential in generating electricity out of waste heat. The main challenge for the development of thermoelectrics is its low conversion efficiency. One key strategy to improve conversion efficiency is reducing the thermal conductivity of thermoelectric materials. In this paper, the state-of-the-art progresses made in improving thermoelectric materials are reviewed and discussed, focusing on phononic engineering via applying porous templates and ALD deposited nanolaminates structure. The effect of nanolaminates structure and porous templates on Seebeck coefficient, electrical conductivity and thermal conductivity, and hence in figure of merit zT of different types of materials system, including PnCs, lead chalcogenide-based nanostructured films on planar and porous templates, ZnO-based superlattice, and hybrid organic-inorganic superlattices, will be reviewed and discussed.
RESUMO
Whether the presence of adsorbates increases or decreases thermal conductivity in metal-organic frameworks (MOFs) has been an open question. Here we report observations of thermal transport in the metal-organic framework HKUST-1 in the presence of various liquid adsorbates: water, methanol, and ethanol. Experimental thermoreflectance measurements were performed on single crystals and thin films, and theoretical predictions were made using molecular dynamics simulations. We find that the thermal conductivity of HKUST-1 decreases by 40 - 80% depending on the adsorbate, a result that cannot be explained by effective medium approximations. Our findings demonstrate that adsorbates introduce additional phonon scattering in HKUST-1, which particularly shortens the lifetimes of low-frequency phonon modes. As a result, the system thermal conductivity is lowered to a greater extent than the increase expected by the creation of additional heat transfer channels. Finally, we show that thermal diffusivity is even more greatly reduced than thermal conductivity by adsorption.
RESUMO
Nested multiple-walled coaxial nanotube structures of transition metal oxides, semiconductors, and metals were successfully synthesized by atomic layer deposition (ALD) techniques utilizing nanoporous anodic aluminum oxide (AAO) as templates. In order to fabricate free-standing tube-in-tube nanostructures, successive ALD nanotubes were grown on the interior template walls of the AAO nanochannels. The coaxial nanotubes were alternated by sacrificial spacers of ALD Al(2)O(3), to be chemically removed to release the nanotubes from the AAO template. In this study, we synthesized a novel nanostructure with up to five nested coaxial nanotubes within AAO templates. This synthesis can be extended to fabricate n-times tube-in-tube nanostructures of different materials with applications in multisensors, broadband detectors, nanocapacitors, and photovoltaic cells.
Assuntos
Nanotubos/química , Óxido de Alumínio/química , Háfnio/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Óxidos/química , TermodinâmicaRESUMO
A low-voltage electroosmotic (EO) micropump based on an anodic aluminum oxide (AAO) nano-porous membrane with platinum electrodes coated on both sides has been designed, fabricated, tested, and analyzed. The maximum flow rate of 0.074 ml min(-1) V(-1) cm(-2) for a membrane with porosity of 0.65 was obtained. A theoretical model, considering the head loss along the entire EO micropump system and the finite electrical double layer (EDL) effect on the flow rate, is developed for the first time to analyze the performance of the EO micropump. The theoretical and experimental results are in good agreement. It is revealed that the major head loss could remarkably decrease the flow rate, which thus should be taken into account for the applications of the EO micropump in various Lab-on-a-chip (LOC) devices. However, the effect of the minor head loss on the flow rate is negligible. The resulting flow rate increases with increasing porosity of the porous membrane and kappaa, the ratio of the radius of the nanopore to the Debye length.