Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Exp Mol Pathol ; 99(3): 441-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26321246

RESUMO

The cholesterol-metabolizing enzyme sterol O-acetyltransferase (SOAT1) is implicated in an increasing number of biological and pathological processes in a number of organ systems, including the differentiation of the hair shaft. While the functional and regulatory mechanisms underlying these diverse functional roles remain poorly understood, the compartment of the hair shaft known as medulla, affected by mutations in Soat1, may serve as a suitable model for defining some of these mechanisms. A comparative analysis of mRNA and protein expression patterns of Soat1/SOAT1 and the transcriptional regulator Hoxc13/HOXC13 in postnatal skin of FVB/NTac mice indicated co-expression in the most proximal cells of the differentiating medulla. This finding combined with the significant downregulation of Soat1 expression in postnatal skin of both Hoxc13 gene-targeted and transgenic mice based on previously reported DNA microarray results suggests a potential regulatory relationship between the two genes. Non-detectable SOAT1 expression in the defective hair follicle medulla of Hoxc13(tm1Mrc) mice and evidence for binding of HOXC13 to the Soat1 upstream control region obtained by ChIP assay suggests that Soat1 is a downstream regulatory target for HOXC13 during medulla differentiation.


Assuntos
Regulação da Expressão Gênica/genética , Cabelo/metabolismo , Proteínas de Homeodomínio/metabolismo , Esterol O-Aciltransferase/genética , Animais , Diferenciação Celular , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pele/metabolismo , Pele/patologia
2.
DNA Cell Biol ; 22(2): 95-105, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12713735

RESUMO

The paired-related homeobox genes, Prx1 and Prx2, are important for normal skeletal and cardiovascular development as well as adult vascular remodeling. The identification and characterization of Prx downstream targets is crucial to understanding their function in normal developmental processes and congenital malformations. To identify Prx2 regulated genes, stably transfected NIH3T3 clones expressing Prx2 sense or antisense transcripts were generated. Expression profiles initially were established for two of the clones using Affymetrix GeneChip arrays. Over 6,400 genes were screened by the microarray approach, and approximately 500 genes differed in expression by a factor of two or more. Fifteen genes were chosen for further analysis. RT-PCR of the two transfectants used in the GeneChip analysis demonstrated that five out of the 15 genes were differentially expressed. However, after screening additional stable transfectant clones only one of the 15 genes, Protease Nexin-1 (PN-1), was differentially expressed. Subsequent Northern blot, RT-PCR, and further GeneChip analysis of additional stable transfectants confirmed that PN-1 expression is increased at least fivefold when Prx2 is overexpressed. It was demonstrated that Prx2 directly regulates PN-1 because (1) Prx2 binds to a cis element in the PN-1 promoter in vitro, and (2) Prx2 regulates the PN-1 promoter in transient transfection assays. The GeneChip analysis generated a prioritized list of other potential targets. The utility and limitations of cell culture models combined with microarray analysis for elucidating complex regulatory cascades are discussed.


Assuntos
Proteínas de Transporte/genética , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Células 3T3 , Precursor de Proteína beta-Amiloide , Animais , Northern Blotting , Proteínas de Transporte/biossíntese , Proteínas de Homeodomínio/genética , Camundongos , Regiões Promotoras Genéticas , Nexinas de Proteases , Receptores de Superfície Celular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional , Transfecção
3.
J Invest Dermatol ; 131(4): 828-37, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21191399

RESUMO

Among the Hox genes, homeobox C13 (Hoxc13) has been shown to be essential for proper hair shaft differentiation, as Hoxc13 gene-targeted (Hoxc13(tm1Mrc)) mice completely lack external hair. Because of the remarkable overt phenotypic parallels to the Foxn1(nu) (nude) mutant mice, we sought to determine whether Hoxc13 and forkhead box N1 (Foxn1) might act in a common pathway of hair follicle (HF) differentiation. We show that the alopecia exhibited by both the Hoxc13(tm1Mrc) and Foxn1(nu) mice is because of strikingly similar defects in hair shaft differentiation and that both mutants suffer from a severe nail dystrophy. These phenotypic similarities are consistent with the extensive overlap between Hoxc13 and Foxn1 expression patterns in the HF and the nail matrix. Furthermore, DNA microarray analysis of skin from Hoxc13(tm1Mrc) mice identified Foxn1 as significantly downregulated along with numerous hair keratin genes. This Foxn1 downregulation apparently reflects the loss of direct transcriptional control by HOXC13 as indicated by our results obtained through co-transfection and chromatin immunoprecipitation (ChIP) assays. As presented in the discussion, these data support a regulatory model of keratinocyte differentiation in which HOXC13-dependent activation of Foxn1 is part of a regulatory cascade controlling the expression of terminal differentiation markers.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Folículo Piloso/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Casco e Garras/fisiologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Regulação para Baixo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/patologia , Casco e Garras/crescimento & desenvolvimento , Casco e Garras/patologia , Queratinócitos/patologia , Queratinócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Nus , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa