Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(5): 101896, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378131

RESUMO

Ruminococcus bromii is a keystone species in the human gut that has the rare ability to degrade dietary resistant starch (RS). This bacterium secretes a suite of starch-active proteins that work together within larger complexes called amylosomes that allow R. bromii to bind and degrade RS. Starch adherence system protein 20 (Sas20) is one of the more abundant proteins assembled within amylosomes, but little could be predicted about its molecular features based on amino acid sequence. Here, we performed a structure-function analysis of Sas20 and determined that it features two discrete starch-binding domains separated by a flexible linker. We show that Sas20 domain 1 contains an N-terminal ß-sandwich followed by a cluster of α-helices, and the nonreducing end of maltooligosaccharides can be captured between these structural features. Furthermore, the crystal structure of a close homolog of Sas20 domain 2 revealed a unique bilobed starch-binding groove that targets the helical α1,4-linked glycan chains found in amorphous regions of amylopectin and crystalline regions of amylose. Affinity PAGE and isothermal titration calorimetry demonstrated that both domains bind maltoheptaose and soluble starch with relatively high affinity (Kd ≤ 20 µM) but exhibit limited or no binding to cyclodextrins. Finally, small-angle X-ray scattering analysis of the individual and combined domains support that these structures are highly flexible, which may allow the protein to adopt conformations that enhance its starch-targeting efficiency. Taken together, we conclude that Sas20 binds distinct features within the starch granule, facilitating the ability of R. bromii to hydrolyze dietary RS.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte , Ruminococcus , Amilopectina/metabolismo , Amilose/metabolismo , Proteínas de Transporte/metabolismo , Carboidratos da Dieta , Humanos , Amido/metabolismo
2.
J Struct Biol ; 213(3): 107765, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186214

RESUMO

Pullulanases are glycoside hydrolase family 13 (GH13) enzymes that target α1,6 glucosidic linkages within starch and aid in the degradation of the α1,4- and α1,6- linked glucans pullulan, glycogen and amylopectin. The human gut bacterium Ruminococcus bromii synthesizes two extracellular pullulanases, Amy10 and Amy12, that are incorporated into the multiprotein amylosome complex that enables the digestion of granular resistant starch from the diet. Here we provide a comparative biochemical analysis of these pullulanases and the x-ray crystal structures of the wild type and the nucleophile mutant D392A of Amy12 complexed with maltoheptaose and 63-α-D glucosyl-maltotriose. While Amy10 displays higher catalytic efficiency on pullulan and cleaves only α1,6 linkages, Amy12 has some activity on α1,4 linkages suggesting that these enzymes are not redundant within the amylosome. Our structures of Amy12 include a mucin-binding protein (MucBP) domain that follows the C-domain of the GH13 fold, an atypical feature of these enzymes. The wild type Amy12 structure with maltoheptaose captured two oligosaccharides in the active site arranged as expected following catalysis of an α1,6 branch point in amylopectin. The nucleophile mutant D392A complexed with maltoheptaose or 63-α-D glucosyl-maltotriose captured ß-glucose at the reducing end in the -1 subsite, facilitated by the truncation of the active site aspartate and stabilized by stacking with Y279. The core interface between the co-crystallized ligands and Amy12 occurs within the -2 through + 1 subsites, which may allow for flexible recognition of α1,6 linkages within a variety of starch structures.


Assuntos
Glicosídeo Hidrolases , Ruminococcus , Glicosídeo Hidrolases/química , Humanos , Ruminococcus/genética , Ruminococcus/metabolismo , Amido/metabolismo , Especificidade por Substrato
3.
Nucleic Acids Res ; 47(11): 5988-5997, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31106374

RESUMO

The σ70 family alternative σI factors and their cognate anti-σI factors are widespread in Clostridia and Bacilli and play a role in heat stress response, virulence, and polysaccharide sensing. Multiple σI/anti-σI factors exist in some lignocellulolytic clostridial species, specifically for regulation of components of a multienzyme complex, termed the cellulosome. The σI and anti-σI factors are unique, because the C-terminal domain of σI (SigIC) and the N-terminal inhibitory domain of anti-σI (RsgIN) lack homology to known proteins. Here, we report structure and interaction studies of a pair of σI and anti-σI factors, SigI1 and RsgI1, from the cellulosome-producing bacterium, Clostridium thermocellum. In contrast to other known anti-σ factors that have N-terminal helical structures, RsgIN has a ß-barrel structure. Unlike other anti-σ factors that bind both σ2 and σ4 domains of the σ factors, RsgIN binds SigIC specifically. Structural analysis showed that SigIC contains a positively charged surface region that recognizes the promoter -35 region, and the synergistic interactions among multiple interfacial residues result in the specificity displayed by different σI/anti-σI pairs. We suggest that the σI/anti-σI factors represent a distinctive mode of σ/anti-σ complex formation, which provides the structural basis for understanding the molecular mechanism of the intricate σI/anti-σI system.


Assuntos
Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Fator sigma/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , RNA Polimerases Dirigidas por DNA/química , Espectroscopia de Ressonância Magnética , Mutagênese , Plasmídeos/metabolismo , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície
4.
Proc Natl Acad Sci U S A ; 115(48): E11274-E11283, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429330

RESUMO

Efficient degradation of plant cell walls by selected anaerobic bacteria is performed by large extracellular multienzyme complexes termed cellulosomes. The spatial arrangement within the cellulosome is organized by a protein called scaffoldin, which recruits the cellulolytic subunits through interactions between cohesin modules on the scaffoldin and dockerin modules on the enzymes. Although many structural studies of the individual components of cellulosomal scaffoldins have been performed, the role of interactions between individual cohesin modules and the flexible linker regions between them are still not entirely understood. Here, we report single-molecule measurements using FRET to study the conformational dynamics of a bimodular cohesin segment of the scaffoldin protein CipA of Clostridium thermocellum We observe compacted structures in solution that persist on the timescale of milliseconds. The compacted conformation is found to be in dynamic equilibrium with an extended state that shows distance fluctuations on the microsecond timescale. Shortening of the intercohesin linker does not destabilize the interactions but reduces the rate of contact formation. Upon addition of dockerin-containing enzymes, an extension of the flexible state is observed, but the cohesin-cohesin interactions persist. Using all-atom molecular-dynamics simulations of the system, we further identify possible intercohesin binding modes. Beyond the view of scaffoldin as "beads on a string," we propose that cohesin-cohesin interactions are an important factor for the precise spatial arrangement of the enzymatic subunits in the cellulosome that leads to the high catalytic synergy in these assemblies and should be considered when designing cellulosomes for industrial applications.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Celulossomas/química , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Clostridium thermocellum/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Celulossomas/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ligação Proteica , Coesinas
5.
J Biol Chem ; 293(19): 7139-7147, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29567834

RESUMO

Cellulosomes are bacterial protein complexes that bind and efficiently degrade lignocellulosic substrates. These are formed by multimodular scaffolding proteins known as scaffoldins, which comprise cohesin modules capable of binding dockerin-bearing enzymes and usually a carbohydrate-binding module that anchors the system to a substrate. It has been suggested that cellulosomes bound to the bacterial cell surface might be exposed to significant mechanical forces. Accordingly, the mechanical properties of these anchored cellulosomes may be important to understand and improve cellulosome function. Here we used single-molecule force spectroscopy to study the mechanical properties of selected cohesin modules from scaffoldins of different cellulosomes. We found that cohesins located in the region connecting the cell and the substrate are more robust than those located outside these two anchoring points. This observation applies to cohesins from primary scaffoldins (i.e. those that directly bind dockerin-bearing enzymes) from different cellulosomes despite their sequence differences. Furthermore, we also found that cohesin nanomechanics (specifically, mechanostability and the position of the mechanical clamp of cohesin) are not significantly affected by other cellulosomal components, including linkers between cohesins, multiple cohesin repeats, and dockerin binding. Finally, we also found that cohesins (from both the connecting and external regions) have poor refolding efficiency but similar refolding rates, suggesting that the high mechanostability of connecting cohesins may be an evolutionarily conserved trait selected to minimize the occurrence of cohesin unfolding, which could irreversibly damage the cellulosome. We conclude that cohesin mechanostability is a major determinant of the overall mechanical stability of the cellulosome.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Membrana/metabolismo , Fenômenos Biomecânicos , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Clostridium thermocellum/metabolismo , Cinética , Microscopia de Força Atômica/métodos , Simulação de Dinâmica Molecular , Ligação Proteica , Redobramento de Proteína , Estabilidade Proteica , Coesinas
6.
J Biol Chem ; 293(11): 4201-4212, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29367338

RESUMO

The cellulosome is a remarkably intricate multienzyme nanomachine produced by anaerobic bacteria to degrade plant cell wall polysaccharides. Cellulosome assembly is mediated through binding of enzyme-borne dockerin modules to cohesin modules of the primary scaffoldin subunit. The anaerobic bacterium Acetivibrio cellulolyticus produces a highly intricate cellulosome comprising an adaptor scaffoldin, ScaB, whose cohesins interact with the dockerin of the primary scaffoldin (ScaA) that integrates the cellulosomal enzymes. The ScaB dockerin selectively binds to cohesin modules in ScaC that anchors the cellulosome onto the cell surface. Correct cellulosome assembly requires distinct specificities displayed by structurally related type-I cohesin-dockerin pairs that mediate ScaC-ScaB and ScaA-enzyme assemblies. To explore the mechanism by which these two critical protein interactions display their required specificities, we determined the crystal structure of the dockerin of a cellulosomal enzyme in complex with a ScaA cohesin. The data revealed that the enzyme-borne dockerin binds to the ScaA cohesin in two orientations, indicating two identical cohesin-binding sites. Combined mutagenesis experiments served to identify amino acid residues that modulate type-I cohesin-dockerin specificity in A. cellulolyticus Rational design was used to test the hypothesis that the ligand-binding surfaces of ScaA- and ScaB-associated dockerins mediate cohesin recognition, independent of the structural scaffold. Novel specificities could thus be engineered into one, but not both, of the ligand-binding sites of ScaB, whereas attempts at manipulating the specificity of the enzyme-associated dockerin were unsuccessful. These data indicate that dockerin specificity requires critical interplay between the ligand-binding surface and the structural scaffold of these modules.


Assuntos
Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Subunidades Proteicas , Homologia de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato , Coesinas
7.
Proteins ; 87(11): 917-930, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31162722

RESUMO

Cellulolytic clostridia use a highly efficient cellulosome system to degrade polysaccharides. To regulate genes encoding enzymes of the multi-enzyme cellulosome complex, certain clostridia contain alternative sigma I (σI ) factors that have cognate membrane-associated anti-σI factors (RsgIs) which act as polysaccharide sensors. In this work, we analyzed the structure-function relationship of the extracellular sensory elements of Clostridium (Ruminiclostridium) thermocellum and Clostridium clariflavum (RsgI3 and RsgI4, respectively). These elements were selected for comparison, as each comprised two tandem PA14-superfamily motifs. The X-ray structures of the PA14 modular dyads from the two bacterial species were determined, both of which showed a high degree of structural and sequence similarity, although their binding preferences differed. Bioinformatic approaches indicated that the DNA sequence of promoter of sigI/rsgI operons represents a strong signature, which helps to differentiate binding specificity of the structurally similar modules. The σI4 -dependent C. clariflavum promoter sequence correlates with binding of RsgI4_PA14 to xylan and was identified in genes encoding xylanases, whereas the σI3 -dependent C. thermocellum promoter sequence correlates with RsgI3_PA14 binding to pectin and regulates pectin degradation-related genes. Structural similarity between clostridial PA14 dyads to PA14-containing proteins in yeast helped identify another crucial signature element: the calcium-binding loop 2 (CBL2), which governs binding specificity. Variations in the five amino acids that constitute this loop distinguish the pectin vs xylan specificities. We propose that the first module (PA14A ) is dominant in directing the binding to the ligand in both bacteria. The two X-ray structures of the different PA14 dyads represent the first reported structures of tandem PA14 modules.


Assuntos
Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Clostridium/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biomassa , Celulossomas/química , Celulossomas/genética , Clostridium/química , Clostridium/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , Alinhamento de Sequência
8.
J Am Chem Soc ; 141(37): 14752-14763, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31464132

RESUMO

Can molecular dynamics simulations predict the mechanical behavior of protein complexes? Can simulations decipher the role of protein domains of unknown function in large macromolecular complexes? Here, we employ a wide-sampling computational approach to demonstrate that molecular dynamics simulations, when carefully performed and combined with single-molecule atomic force spectroscopy experiments, can predict and explain the behavior of highly mechanostable protein complexes. As a test case, we studied a previously unreported homologue from Ruminococcus flavefaciens called X-module-Dockerin (XDoc) bound to its partner Cohesin (Coh). By performing dozens of short simulation replicas near the rupture event, and analyzing dynamic network fluctuations, we were able to generate large simulation statistics and directly compare them with experiments to uncover the mechanisms involved in mechanical stabilization. Our single-molecule force spectroscopy experiments show that the XDoc-Coh homologue complex withstands forces up to 1 nN at loading rates of 105 pN/s. Our simulation results reveal that this remarkable mechanical stability is achieved by a protein architecture that directs molecular deformation along paths that run perpendicular to the pulling axis. The X-module was found to play a crucial role in shielding the adjacent protein complex from mechanical rupture. These mechanisms of protein mechanical stabilization have potential applications in biotechnology for the development of systems exhibiting shear enhanced adhesion or tunable mechanics.


Assuntos
Imagem Individual de Molécula/métodos , Proteínas de Bactérias/química , Fenômenos Mecânicos , Microscopia de Força Atômica/métodos , Simulação de Dinâmica Molecular , Ruminococcus/química
9.
Annu Rev Microbiol ; 68: 279-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25002092

RESUMO

Mammals rely entirely on symbiotic microorganisms within their digestive tract to gain energy from plant biomass that is resistant to mammalian digestive enzymes. Especially in herbivorous animals, specialized organs (the rumen, cecum, and colon) have evolved that allow highly efficient fermentation of ingested plant biomass by complex anaerobic microbial communities. We consider here the two most intensively studied, representative gut microbial communities involved in degradation of plant fiber: those of the rumen and the human large intestine. These communities are dominated by bacteria belonging to the Firmicutes and Bacteroidetes phyla. In Firmicutes, degradative capacity is largely restricted to the cell surface and involves elaborate cellulosome complexes in specialized cellulolytic species. By contrast, in the Bacteroidetes, utilization of soluble polysaccharides, encoded by gene clusters (PULs), entails outer membrane binding proteins, and degradation is largely periplasmic or intracellular. Biomass degradation involves complex interplay between these distinct groups of bacteria as well as (in the rumen) eukaryotic microorganisms.


Assuntos
Bactérias/metabolismo , Trato Gastrointestinal/microbiologia , Microbiota , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biomassa , Trato Gastrointestinal/metabolismo , Humanos
10.
Proc Natl Acad Sci U S A ; 113(39): 10854-9, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621442

RESUMO

Efficient breakdown of lignocellulose polymers into simple molecules is a key technological bottleneck limiting the production of plant-derived biofuels and chemicals. In nature, plant biomass degradation is achieved by the action of a wide range of microbial enzymes. In aerobic microorganisms, these enzymes are secreted as discrete elements in contrast to certain anaerobic bacteria, where they are assembled into large multienzyme complexes termed cellulosomes. These complexes allow for very efficient hydrolysis of cellulose and hemicellulose due to the spatial proximity of synergistically acting enzymes and to the limited diffusion of the enzymes and their products. Recently, designer cellulosomes have been developed to incorporate foreign enzymatic activities in cellulosomes so as to enhance lignocellulose hydrolysis further. In this study, we complemented a cellulosome active on cellulose and hemicellulose by addition of an enzyme active on lignin. To do so, we designed a dockerin-fused variant of a recently characterized laccase from the aerobic bacterium Thermobifida fusca The resultant chimera exhibited activity levels similar to the wild-type enzyme and properly integrated into the designer cellulosome. The resulting complex yielded a twofold increase in the amount of reducing sugars released from wheat straw compared with the same system lacking the laccase. The unorthodox use of aerobic enzymes in designer cellulosome machinery effects simultaneous degradation of the three major components of the plant cell wall (cellulose, hemicellulose, and lignin), paving the way for more efficient lignocellulose conversion into soluble sugars en route to alternative fuels production.


Assuntos
Metabolismo dos Carboidratos , Celulossomas/metabolismo , Lacase/metabolismo , Lignina/metabolismo , Triticum/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulose/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Hidrólise , Cinética , Ligação Proteica , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Coesinas
11.
Int J Mol Sci ; 20(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547488

RESUMO

ß-Glucosidases are key enzymes in the process of cellulose utilization. It is the last enzyme in the cellulose hydrolysis chain, which converts cellobiose to glucose. Since cellobiose is known to have a feedback inhibitory effect on a variety of cellulases, ß-glucosidase can prevent this inhibition by hydrolyzing cellobiose to non-inhibitory glucose. While the optimal temperature of the Clostridium thermocellum cellulosome is 70 °C, C. thermocellum ß-glucosidase A is almost inactive at such high temperatures. Thus, in the current study, a random mutagenesis directed evolutionary approach was conducted to produce a thermostable mutant with Kcat and Km, similar to those of the wild-type enzyme. The resultant mutant contained two mutations, A17S and K268N, but only the former was found to affect thermostability, whereby the inflection temperature (Ti) was increased by 6.4 °C. A17 is located near the central cavity of the native enzyme. Interestingly, multiple alignments revealed that position 17 is relatively conserved, whereby alanine is replaced only by serine. Upon the addition of the thermostable mutant to the C. thermocellum secretome for subsequent hydrolysis of microcrystalline cellulose at 70 °C, a higher soluble glucose yield (243%) was obtained compared to the activity of the secretome supplemented with the wild-type enzyme.


Assuntos
Proteínas de Bactérias , Clostridium thermocellum , Evolução Molecular Direcionada , Temperatura Alta , beta-Glucosidase , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Estabilidade Enzimática/genética , Mutação de Sentido Incorreto , beta-Glucosidase/química , beta-Glucosidase/genética
12.
Environ Microbiol ; 20(1): 324-336, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29159997

RESUMO

Ruminococcus bromii is a dominant member of the human colonic microbiota that plays a 'keystone' role in degrading dietary resistant starch. Recent evidence from one strain has uncovered a unique cell surface 'amylosome' complex that organizes starch-degrading enzymes. New genome analysis presented here reveals further features of this complex and shows remarkable conservation of amylosome components between human colonic strains from three different continents and a R. bromii strain from the rumen of Australian cattle. These R. bromii strains encode a narrow spectrum of carbohydrate active enzymes (CAZymes) that reflect extreme specialization in starch utilization. Starch hydrolysis products are taken up mainly as oligosaccharides, with only one strain able to grow on glucose. The human strains, but not the rumen strain, also possess transporters that allow growth on galactose and fructose. R. bromii strains possess a full complement of sporulation and spore germination genes and we demonstrate the ability to form spores that survive exposure to air. Spore formation is likely to be a critical factor in the ecology of this nutritionally highly specialized bacterium, which was previously regarded as 'non-sporing', helping to explain its widespread occurrence in the gut microbiota through the ability to transmit between hosts.


Assuntos
Colo/microbiologia , Rúmen/microbiologia , Ruminococcus/metabolismo , Esporos Bacterianos , Animais , Metabolismo dos Carboidratos , Bovinos , Criança , Humanos , Masculino , Microbiota , Complexos Multiproteicos , Ruminococcus/isolamento & purificação , Ruminococcus/ultraestrutura , Amido/metabolismo
13.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29453253

RESUMO

Heterologous display of enzymes on microbial cell surfaces is an extremely desirable approach, since it enables the engineered microbe to interact directly with the plant wall extracellular polysaccharide matrix. In recent years, attempts have been made to endow noncellulolytic microbes with genetically engineered cellulolytic capabilities for improved hydrolysis of lignocellulosic biomass and for advanced probiotics. Thus far, however, owing to the hurdles encountered in secreting and assembling large, intricate complexes on the bacterial cell wall, only free cellulases or relatively simple cellulosome assemblies have been introduced into live bacteria. Here, we employed the "adaptor scaffoldin" strategy to compensate for the low levels of protein displayed on the bacterial cell surface. That strategy mimics natural elaborated cellulosome architectures, thus exploiting the exponential features of their Lego-like combinatorics. Using this approach, we produced several bacterial consortia of Lactobacillus plantarum, a potent gut microbe which provides a very robust genetic framework for lignocellulosic degradation. We successfully engineered surface display of large, fully active self-assembling cellulosomal complexes containing an unprecedented number of catalytic subunits all produced in vivo by the cell consortia. Our results demonstrate that the enzyme stability and performance of the cellulosomal machinery, which are superior to those seen with the equivalent secreted free enzyme system, and the high cellulase-to-xylanase ratios proved beneficial for efficient degradation of wheat straw.IMPORTANCE The multiple benefits of lactic acid bacteria are well established in health and industry. Here we present an approach designed to extensively increase the cell surface display of proteins via successive assembly of interactive components. Our findings present a stepping stone toward proficient engineering of Lactobacillus plantarum, a widespread, environmentally important bacterium and potent microbiome member, for improved degradation of lignocellulosic biomass and advanced probiotics.


Assuntos
Membrana Celular/metabolismo , Celulase/química , Celulase/metabolismo , Celulose/metabolismo , Celulossomas/metabolismo , Lactobacillus plantarum/metabolismo , Celulase/genética , Microbioma Gastrointestinal
14.
Biomacromolecules ; 19(5): 1686-1696, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29617128

RESUMO

Processive hydrolysis of crystalline cellulose by cellulases is a critical step for lignocellulose deconstruction. The classic Trichoderma reesei exoglucanase TrCel7A, which has a closed active-site tunnel, starts each processive run by threading the tunnel with a cellulose chain. Loop regions are necessary for tunnel conformation, resulting in weak thermostability of fungal exoglucanases. However, endoglucanase CcCel9A, from the thermophilic bacterium Clostridium cellulosi, comprises a glycoside hydrolase (GH) family 9 module with an open cleft and five carbohydrate-binding modules (CBMs) and hydrolyzes crystalline cellulose processively. How CcCel9A and other similar GH9 enzymes bind to the smooth surface of crystalline cellulose to achieve processivity is still unknown. Our results demonstrate that the C-terminal CBM3b and three CBMX2s enhance productive adsorption to cellulose, while the CBM3c adjacent to the GH9 is tightly bound to 11 glucosyl units, thereby extending the catalytic cleft to 17 subsites, which facilitates decrystallization by forming a supramodular binding surface. In the open cleft, the strong interaction forces between substrate-binding subsites and glucosyl rings enable cleavage of the hydrogen bonds and extraction of a single cellulose chain. In addition, subsite -4 is capable of drawing the chain to its favored location. Cellotetraose is released from the open cleft as the initial product to achieve high processivity, which is further hydrolyzed to cellotriose, cellobiose and glucose by the catalytic cleft of the endoglucanase. On this basis, we propose a wirewalking mode for processive degradation of crystalline cellulose by an endoglucanase, which provides insights for rational design of industrial cellulases.


Assuntos
Proteínas de Bactérias/química , Celulase/química , Celulose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Celulase/genética , Celulase/metabolismo , Clostridium/enzimologia , Clostridium/genética , Hidrólise , Ligação Proteica
15.
Phys Chem Chem Phys ; 20(45): 28445-28451, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30406775

RESUMO

The cellulosome provides a fully worked out example of evolved radical nanotechnology. Improved understanding, and first steps toward re-engineering this biological nanomachine, is providing design rules for the formulation of advanced synthetic materials that can harness molecular flexibility and sticking interactions for applications in clean energy, environmental monitoring, and miniaturized devices. Computer simulations provide atomic scale insights into the mechanical stability of the component protein units, flexibility of short peptides that tether the units into scaffolds, and thermodynamic stability of protein-protein and protein-carbohydrate complexes, complementing and in some cases directing experiments. In the present work, a systematic computational study of cohesin-dockerin pairs, the strongly-bound protein complexes that glue the cellulosome nano-architecture in place, reveals that a short alpha-helix in the middle of the smaller dockerin protein becomes disordered at elevated temperatures and weakens cohesin-dockerin binding in mesophilic species. In thermophilic species, a more extensive and more thermally resistant H-bond network ensures the structure remains ordered at elevated temperatures of up to 400 K. The simulations predict that simply grafting the most crucial eight-residue peptide sequence into the mesophilic complex can, for one species and one of two possible binding modes, potentially create a new thermally resistant complex, providing leads for future experiments to re-engineer designer cellulosomes that can withstand elevated temperatures and so provide clean, renewable biocatalysts.

16.
Phys Chem Chem Phys ; 20(12): 8278-8293, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29528340

RESUMO

Transformation of cellulose into monosaccharides can be achieved by hydrolysis of the cellulose chains, carried out by a special group of enzymes known as cellulases. The enzymatic mechanism of cellulases is well described, but the role of non-enzymatic components of the cellulose-degradation machinery is still poorly understood, and difficult to measure using experiments alone. In this study, we use a comprehensive set of atomistic molecular dynamics simulations to probe the molecular details of binding of the family-3a carbohydrate-binding module (CBM3a) and the bacterial expansin protein (EXLX1) to a range of cellulose substrates. Our results suggest that CBM3a behaves in a similar way on both crystalline and amorphous cellulose, whereas binding of the dual-domain expansin protein depends on the substrate crystallinity, and we relate our computed binding modes to the experimentally measured features of CBM and expansin action on cellulose.


Assuntos
Proteínas de Bactérias/química , Celulose/química , Celulossomas/química , Simulação de Dinâmica Molecular , Bacillus subtilis/química , Sítios de Ligação , Clostridium thermocellum/química , Cristalização , Modelos Moleculares , Conformação Molecular , Monossacarídeos/química , Nanofibras , Ligação Proteica
17.
J Biol Chem ; 291(52): 26658-26669, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27875311

RESUMO

The assembly of one of Nature's most elaborate multienzyme complexes, the cellulosome, results from the binding of enzyme-borne dockerins to reiterated cohesin domains located in a non-catalytic primary scaffoldin. Generally, dockerins present two similar cohesin-binding interfaces that support a dual binding mode. The dynamic integration of enzymes in cellulosomes, afforded by the dual binding mode, is believed to incorporate additional flexibility in highly populated multienzyme complexes. Ruminococcus flavefaciens, the primary degrader of plant structural carbohydrates in the rumen of mammals, uses a portfolio of more than 220 different dockerins to assemble the most intricate cellulosome known to date. A sequence-based analysis organized R. flavefaciens dockerins into six groups. Strikingly, a subset of R. flavefaciens cellulosomal enzymes, comprising dockerins of groups 3 and 6, were shown to be indirectly incorporated into primary scaffoldins via an adaptor scaffoldin termed ScaC. Here, we report the crystal structure of a group 3 R. flavefaciens dockerin, Doc3, in complex with ScaC cohesin. Doc3 is unusual as it presents a large cohesin-interacting surface that lacks the structural symmetry required to support a dual binding mode. In addition, dockerins of groups 3 and 6, which bind exclusively to ScaC cohesin, display a conserved mechanism of protein recognition that is similar to Doc3. Groups 3 and 6 dockerins are predominantly appended to hemicellulose-degrading enzymes. Thus, single binding mode dockerins interacting with adaptor scaffoldins exemplify an evolutionary pathway developed by R. flavefaciens to recruit hemicellulases to the sophisticated cellulosomes acting in the gastrointestinal tract of mammals.


Assuntos
Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Celulossomas/metabolismo , Polissacarídeos/metabolismo , Ruminococcus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/metabolismo , Celulase/química , Celulossomas/microbiologia , Proteínas Cromossômicas não Histona/metabolismo , Cristalização , Cristalografia por Raios X , Infecções por Bactérias Gram-Positivas/microbiologia , Complexos Multienzimáticos , Ligação Proteica , Conformação Proteica , Ruminococcus/genética , Homologia de Sequência de Aminoácidos , Coesinas
18.
Environ Microbiol ; 19(1): 185-197, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27712009

RESUMO

The cellulosome is an extracellular multi-enzyme complex that is considered one of the most efficient plant cell wall-degrading strategies devised by nature. Its unique modular architecture, achieved by high affinity and specific interaction between protein modules (cohesins and dockerins) enables formation of various enzyme combinations. Extensive research has been dedicated to the mechanistic nature of the cellulosome complex. Nevertheless, little is known regarding its distribution and abundance among microbes in natural plant fibre-rich environments. Here, we explored these questions in bovine rumen microbial communities, specialized in efficient degradation of lignocellulosic plant material. We bioinformatically screened for cellulosomal modules in this complex environment using a previously published ultra-deep fibre-adherent rumen metagenome. Intriguingly, a large portion of the functions of the dockerin-containing proteins were related to alternative biological processes, and not necessarily to the classic fibre degradation function. Our analysis was experimentally validated by characterizing specific interactions between selected cohesins and dockerins and revealed that cellulosome is a more generalized strategy used by diverse bacteria, some of which were not previously associated with cellulosome production. Remarkably, our results provide additional proof of similarity among rumen microbial communities worldwide. This study suggests a broader and widespread role for the cellulosomal machinery in nature.


Assuntos
Bactérias/isolamento & purificação , Celulossomas/enzimologia , Microbioma Gastrointestinal , Filogenia , Rúmen/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Celulossomas/genética , Metagenoma , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo
19.
Appl Environ Microbiol ; 83(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159788

RESUMO

Cellulosomes are considered to be one of the most efficient systems for the degradation of plant cell wall polysaccharides. The central cellulosome component comprises a large, noncatalytic protein subunit called scaffoldin. Multiple saccharolytic enzymes are incorporated into the scaffoldins via specific high-affinity cohesin-dockerin interactions. Recently, the regulation of genes encoding certain cellulosomal components by multiple RNA polymerase alternative σI factors has been demonstrated in Clostridium (Ruminiclostridium) thermocellum In the present report, we provide experimental evidence demonstrating that the C. thermocellum cipA gene, which encodes the primary cellulosomal scaffoldin, is regulated by several alternative σI factors and by the vegetative σA factor. Furthermore, we show that previously suggested transcriptional start sites (TSSs) of C. thermocellum cipA are actually posttranscriptional processed sites. By using comparative bioinformatic analysis, we have also identified highly conserved σI- and σA-dependent promoters upstream of the primary scaffoldin-encoding genes of other clostridia, namely, Clostridium straminisolvens, Clostridium clariflavum, Acetivibrio cellulolyticus, and Clostridium sp. strain Bc-iso-3. Interestingly, a previously identified TSS of the primary scaffoldin CbpA gene of Clostridium cellulovorans matches the predicted σI-dependent promoter identified in the present work rather than the previously proposed σA promoter. With the exception of C. cellulovorans, both σI and σA promoters of primary scaffoldin genes are located more than 600 nucleotides upstream of the start codon, yielding long 5'-untranslated regions (5'-UTRs). Furthermore, these 5'-UTRs have highly conserved stem-loop structures located near the start codon. We propose that these large 5'-UTRs may be involved in the regulation of both the primary scaffoldin and other cellulosomal components.IMPORTANCE Cellulosome-producing bacteria are among the most effective cellulolytic microorganisms known. This group of bacteria has biotechnological potential for the production of second-generation biofuels and other biocommodities from cellulosic wastes. The efficiency of cellulose hydrolysis is due to their cellulosomes, which arrange enzymes in close proximity on the cellulosic substrate, thereby increasing synergism among the catalytic domains. The backbone of these multienzyme nanomachines is the scaffoldin subunit, which has been the subject of study for many years. However, its genetic regulation is poorly understood. Hence, from basic and applied points of view, it is imperative to unravel the regulatory mechanisms of the scaffoldin genes. The understanding of these regulatory mechanisms can help to improve the performance of the industrially relevant strains of C. thermocellum and related cellulosome-producing bacteria en route to the consolidated bioprocessing of biomass.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Celulose/metabolismo , Celulossomas/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões 5' não Traduzidas , Hidrólise , Regiões Promotoras Genéticas , Fator sigma/metabolismo , Sítio de Iniciação de Transcrição
20.
Proc Natl Acad Sci U S A ; 111(25): 9109-14, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927597

RESUMO

Efficient conversion of cellulose into soluble sugars is a key technological bottleneck limiting efficient production of plant-derived biofuels and chemicals. In nature, the process is achieved by the action of a wide range of cellulases and associated enzymes. In aerobic microrganisms, cellulases are secreted as free enzymes. Alternatively, in certain anaerobic microbes, cellulases are assembled into large multienzymes complexes, termed "cellulosomes," which allow for efficient hydrolysis of cellulose. Recently, it has been shown that enzymes classified as lytic polysaccharide monooxygenases (LPMOs) were able to strongly enhance the activity of cellulases. However, LPMOs are exclusively found in aerobic organisms and, thus, cannot benefit from the advantages offered by the cellulosomal system. In this study, we designed several dockerin-fused LPMOs based on enzymes from the bacterium Thermobifida fusca. The resulting chimeras exhibited activity levels on microcrystalline cellulose similar to that of the wild-type enzymes. The dockerin moieties of the chimeras were demonstrated to be functional and to specifically bind to their corresponding cohesin partner. The chimeric LPMOs were able to self-assemble in designer cellulosomes alongside an endo- and an exo-cellulase also converted to the cellulosomal mode. The resulting complexes showed a 1.7-fold increase in the release of soluble sugars from cellulose, compared with the free enzymes, and a 2.6-fold enhancement compared with free cellulases without LPMO enhancement. These results highlight the feasibility of the conversion of LPMOs to the cellulosomal mode, and that these enzymes can benefit from the proximity effects generated by the cellulosome architecture.


Assuntos
Actinomycetales/enzimologia , Proteínas de Bactérias/química , Celulose/química , Oxigenases de Função Mista/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa