RESUMO
Resistance to therapies targeting the epidermal growth factor receptor (EGFR), such as cetuximab, remains a major roadblock in the search for effective therapeutic strategies in head and neck squamous cell carcinoma (HNSCC). Due to its close interaction with the EGFR pathway, redundant or compensatory activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been proposed as a major driver of resistance to EGFR inhibitors. Understanding the role of each of the main proteins involved in this pathway is utterly important to develop rational combination strategies able to circumvent resistance. Therefore, the current work reviewed the role of PI3K/Akt pathway proteins, including Ras, PI3K, tumor suppressor phosphatase and tensing homolog, Akt and mammalian target of rapamycin in resistance to anti-EGFR treatment in HNSCC. In addition, we summarize PI3K/Akt pathway inhibitors that are currently under (pre)clinical investigation with focus on overcoming resistance to EGFR inhibitors. In conclusion, genomic alterations in and/or overexpression of one or more of these proteins are common in both human papillomavirus (HPV)-positive and HPV-negative HNSCC tumors. Therefore, downstream effectors of the PI3K/Akt pathway serve as promising drug targets in the search for novel therapeutic strategies that are able to overcome resistance to anti-EGFR treatment. Co-targeting EGFR and the PI3K/Akt pathway can lead to synergistic drug interactions, possibly restoring sensitivity to EGFR inhibitors and hereby improving clinical efficacy. Better understanding of the predictive value of PI3K/Akt pathway alterations is needed to allow the identification of patient populations that might benefit most from these combination strategies.
Assuntos
Receptores ErbB/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço , Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológicoRESUMO
When concentrated particle suspensions flow into a constricting channel, the suspended particles may either smoothly flow through the constriction or jam and clog the channel. These clogging events are typically detrimental to technological processes, such as in the printing of dense pastes or in filtration, but can also be exploited in micro-separation applications. Many studies have to date focused on important parameters influencing the occurrence of clogs, such as flow velocity, particle concentration, and channel geometry. However, the investigation of the role played by the particle surface properties has surprisingly received little attention so far. Here, we study the effect of surface roughness on the clogging of suspensions of silica particles under pressure-driven flows along a microchannel presenting a constriction. We synthesize micron-sized particles with uniform surface chemistry and tunable roughness and determine the occurrence of clogging events as a function of velocity and volume fraction for a given surface topography. Our results show that there is a clear correlation between surface roughness and flow rate, indicating that rougher particles are more likely to jam at the constriction for slower flows. These findings identify surface roughness as an essential parameter to consider in the formulation of particulate suspensions for applications where clogging plays an important role.
RESUMO
BACKGROUND: The epidermal growth factor receptor (EGFR) is overexpressed by 80-90% of squamous cell carcinoma of head and neck (HNSCC). In addition to inhibiting EGFR signal transduction, cetuximab, a monoclonal antibody targeting EGFR can also bind to fragment crystallisable domain of immunoglobulins G1 present on natural killer (NK), causing antibody-dependent cellular cytotoxicity (ADCC). However, presence of cetuximab resistance limits effective clinical management of HNSCC. METHODS: In this study, differences in induction of ADCC were investigated in a panel of ten HNSCC cell lines. Tumour cells were co-cultured with NK cells and monitored using the xCELLigence RTCA. RESULTS: While ADCC was not influenced by HPV status, hypoxia and cetuximab resistance did affect ADCC differentially. Intrinsic cetuximab-resistant cell lines showed an increased ADCC induction, whereas exposure to hypoxia reduced ADCC. Baseline EGFR expression was not correlated with ADCC. In contrast, EGFR internalisation following cetuximab treatment was positively correlated with ADCC. CONCLUSION: These findings support the possibility that resistance against cetuximab can be overcome by NK cell-based immune reactions. As such, it provides an incentive to combine cetuximab with immunotherapeutic approaches, thereby possibly enhancing the anti-tumoural immune responses and achieving greater clinical effectiveness of EGFR-targeting agents.
Assuntos
Cetuximab/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Infecções por Papillomavirus/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologiaRESUMO
The emerging fields of wearables and the Internet of Things introduce the need for electronics and power sources with unconventional form factors: large area, customizable shape, and flexibility. Thermoelectric (TE) generators can power those systems by converting abundant waste heat into electricity, whereas the versatility of additive manufacturing suits heterogeneous form factors. Here, additive manufacturing of high-performing flexible TEs is proposed. Maskless and large-area patterning of Bi2Te3-based films is performed by laser powder bed fusion directly on plastic foil. Mechanical interlocking allows simultaneous patterning, sintering, and attachment of the films to the substrate without using organic binders that jeopardize the final performance. Material waste could be minimized by recycling the unexposed powder. The particular microstructure of the laser-printed material renders the-otherwise brittle-Bi2Te3 films highly flexible despite their high thickness. The films survive 500 extreme-bending cycles to a 0.76 mm radius. Power factors above 1500 µW m-1K-2 and a record-low sheet resistance for flexible TEs of 0.4 Ω sq-1 are achieved, leading to unprecedented potential for power generation. This versatile fabrication route enables innovative implementations, such as cuttable arrays adapting to specific applications in self-powered sensing, and energy harvesting from unusual scenarios like human skin and curved hot surfaces.
RESUMO
Aim: Acquired resistance to the targeted agent cetuximab poses a significant challenge in finding effective anti-cancer treatments for head and neck squamous cell carcinoma (HNSCC). To accurately study novel combination treatments, suitable preclinical mouse models for cetuximab resistance are key yet currently limited. This study aimed to optimize an acquired cetuximab-resistant mouse model, with preservation of the innate immunity, ensuring intact antibody-dependent cellular cytotoxicity (ADCC) functionality. Methods: Cetuximab-sensitive and acquired-resistant HNSCC cell lines, generated in vitro, were subcutaneously engrafted in Rag2 knock-out (KO), BALB/c Nude and CB17 Scid mice with/without Matrigel or Geltrex. Once tumor growth was established, mice were intraperitoneally injected twice a week with cetuximab for a maximum of 3 weeks. In addition, immunohistochemistry was used to evaluate the tumor and its microenvironment. Results: Despite several adjustments in cell number, cell lines and the addition of Matrigel, Rag2 KO and BALB/C Nude mice proved to be unsuitable for xenografting our HNSCC cell lines. Durable tumor growth of resistant SC263-R cells could be induced in CB17 Scid mice. However, these cells had lost their resistance phenotype in vivo. Immunohistochemistry revealed a high infiltration of macrophages in cetuximab-treated SC263-R tumors. FaDu-S and FaDu-R cells successfully engrafted into CB17 Scid mice and maintained their sensitivity/resistance to cetuximab. Conclusion: We have established in vivo HNSCC mouse models with intact ADCC functionality for cetuximab resistance and sensitivity using the FaDu-R and FaDu-S cell lines, respectively. These models serve as valuable tools for investigating cetuximab resistance mechanisms and exploring novel drug combination strategies.
RESUMO
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that retain their poor prognosis despite recent advances in their standard of care. As the involvement of the immune system against HNSCC development is well-recognized, characterization of the immune signature and the complex interplay between HNSCC and the immune system could lead to the identification of novel therapeutic targets that are required now more than ever. In this study, we investigated RNA sequencing data of 530 HNSCC patients from The Cancer Genome Atlas (TCGA) for which the immune composition (CIBERSORT) was defined by the relative fractions of 10 immune-cell types and expression data of 45 immune checkpoint ligands were quantified. This initial investigation was followed by immunohistochemical (IHC) staining for a curated selection of immune cell types and checkpoint ligands markers in tissue samples of 50 advanced stage HNSCC patients. The outcome of both analyses was correlated with clinicopathological parameters and patient overall survival. Our results indicated that HNSCC tumors are in close contact with both cytotoxic and immunosuppressive immune cells. TCGA data showed prognostic relevance of dendritic cells, M2 macrophages and neutrophils, while IHC analysis associated T cells and natural killer cells with better/worse prognostic outcome. HNSCC tumors in our TCGA cohort showed differential RNA over- and underexpression of 28 immune inhibitory and activating checkpoint ligands compared to healthy tissue. Of these, CD73, CD276 and CD155 gene expression were negative prognostic factors, while CD40L, CEACAM1 and Gal-9 expression were associated with significantly better outcomes. Our IHC analyses confirmed the relevance of CD155 and CD276 protein expression, and in addition PD-L1 expression, as independent negative prognostic factors, while HLA-E overexpression was associated with better outcomes. Lastly, the co-presence of both (i) CD155 positive cells with intratumoral NK cells; and (ii) PD-L1 expression with regulatory T cell infiltration may hold prognostic value for these cohorts. Based on our data, we propose that CD155 and CD276 are promising novel targets for HNSCC, possibly in combination with the current standard of care or novel immunotherapies to come.
Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Antígeno B7-H1/metabolismo , Prognóstico , Neoplasias de Cabeça e Pescoço/genética , Ligante de CD40 , Ligantes , RNA , Antígenos B7RESUMO
The epidermal growth factor receptor (EGFR) is a therapeutic target in head and neck squamous cell carcinoma (HNSCC). Resistance to EGFR-targeted therapies, such as cetuximab, poses a challenging problem. This study aims to characterize acquired cetuximab resistance mechanisms in HNSCC cell lines by protein phosphorylation profiling. Through this, promising combination treatments can be identified to possibly overcome acquired cetuximab resistance in HNSCC. Protein phosphorylation profiling showed increased phosphorylation of Akt1/2/3 after cetuximab treatment in acquired cetuximab resistant cells compared to cetuximab sensitive cells, which was confirmed by western blotting. Based on this protein phosphorylation profile, a novel combination treatment with cetuximab and the Akt1/2/3 inhibitor MK2206 was designed. Synergy between cetuximab and MK2206 was observed in two cetuximab sensitive HNSCC cell lines and one acquired cetuximab resistant variant in simultaneous treatment schedules. In conclusion, this study demonstrates that increased Akt1/2/3 phosphorylation seems to be characteristic for acquired cetuximab resistance in HNSCC cell lines. Our results also show an additive to synergistic interaction between cetuximab and MK2206 in simultaneous treatment schedules. These data support the hypothesis that the combination of cetuximab with PI3K/Akt pathway inhibition might be a promising novel therapeutic strategy to overcome acquired cetuximab resistance in HNSCC patients.
RESUMO
Cetuximab has an established role in the treatment of patients with recurrent/metastatic colorectal cancer and head and neck squamous cell cancer (HNSCC). However, the long-term effectiveness of cetuximab has been limited by the development of acquired resistance, leading to tumor relapse. By contrast, immunotherapies can elicit long-term tumor regression, but the overall response rates are much more limited. In addition to epidermal growth factor (EGFR) inhibition, cetuximab can activate natural killer (NK) cells to induce antibody-dependent cellular cytotoxicity (ADCC). In view of the above, there is an unmet need for the majority of patients that are treated with both monotherapy cetuximab and immunotherapy. Accumulated evidence from (pre-)clinical studies suggests that targeted therapies can have synergistic antitumor effects through combination with immunotherapy. However, further optimizations, aimed towards illuminating the multifaceted interplay, are required to avoid toxicity and to achieve better therapeutic effectiveness. The current review summarizes existing (pre-)clinical evidence to provide a rationale supporting the use of combined cetuximab and immunotherapy approaches in patients with different types of cancer.
Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Cetuximab/uso terapêutico , Neoplasias Colorretais/terapia , Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia Adotiva , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/transplante , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cetuximab/efeitos adversos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citocinas/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/secundário , Resultado do Tratamento , Evasão Tumoral/efeitos dos fármacosRESUMO
The epidermal growth factor receptor (EGFR) is an important therapeutic target in colorectal cancer (CRC). After the initial promising results of EGFR-targeted therapies such as cetuximab, therapeutic resistance poses a challenging problem and limits the success of effective anti-EGFR cancer therapies in the clinic. In order to overcome resistance to these EGFR-targeted therapies, new treatment options are necessary. The objective of this study was to investigate the expression of human epidermal growth factor (HER) receptors and the efficacy of afatinib, a second-generation irreversible EGFR-tyrosine kinase inhibitor, in RAS wild-type CRC cell lines with different cetuximab sensitivities. CRC cell lines with different sensitivities to cetuximab showed rather low EGFR expression but high HER2 and HER3 expression. These results were in line with the The Cancer Genome Atlas (TCGA) data from CRC patients, where higher mRNA levels of HER2 and HER3 were also detected compared to EGFR. Therefore, the targets of afatinib were indeed expressed on the CRC cell lines used in this study and in CRC patients. Furthermore, cetuximab resistance had no significant influence on the expression levels of HER receptors in CRC cell lines (p ≥ 0.652). This study also demonstrated that afatinib was able to induce a concentration-dependent cytotoxic effect in RAS wild-type CRC cell lines with different cetuximab sensitivities. Neither cetuximab resistance (p = 0.233) nor hypoxia (p = 0.157) significantly influenced afatinib's cytotoxic effect. In conclusion, our preclinical data support the hypothesis that treatment with afatinib might be a promising novel therapeutic strategy for CRC patients experiencing intrinsic and acquired cetuximab resistance.
RESUMO
The epidermal growth factor receptor (EGFR, HER1) is a therapeutic target in head and neck squamous cell carcinoma (HNSCC). After initial promising results with EGFR-targeted therapies such as cetuximab, therapeutic resistance has become a major clinical problem, and new treatment options are therefore necessary. Moreover, the relationship between HER receptors, anti-EGFR therapies, and the human papillomavirus (HPV) status in HNSCC is not fully understood. In contrast to first-generation EGFR inhibitors, afatinib irreversibly inhibits multiple HER receptors simultaneously. Therefore, treatment with afatinib might result in a more pronounced therapeutic benefit, even in patients experiencing cetuximab resistance. In this study, the cytotoxic effect of afatinib as single agent and in combination with cisplatin was investigated in cetuximab-sensitive, intrinsically cetuximab-resistant, and acquired cetuximab-resistant HNSCC cell lines with different HPV status under normoxia and hypoxia. Furthermore, the influence of cetuximab resistance, HPV, and hypoxia on the expression of HER receptors was investigated. Our results demonstrated that afatinib was able to establish cytotoxicity in cetuximab-sensitive, intrinsically cetuximab-resistant, and acquired cetuximab-resistant HNSCC cell lines, independent of the HPV status. However, cross-resistance between cetuximab and afatinib might be possible. Treatment with afatinib caused a G0 /G1 cell cycle arrest as well as induction of apoptotic cell death. Additive to antagonistic interactions between afatinib and cisplatin could be observed. Neither cetuximab resistance nor HPV status significantly influenced the expression of HER receptors in HNSCC cell lines. In contrast, the expression of EGFR, HER2, and HER3 was significantly altered under hypoxia. Oxygen deficiency is a common characteristic of HNSCC tumors, and these hypoxic tumor regions often contain cells that are more resistant to treatment. However, we observed that afatinib maintained its cytotoxic effect under hypoxia. In conclusion, our preclinical data support the hypothesis that afatinib might be a promising therapeutic strategy to treat patients with HNSCC experiencing intrinsic or acquired cetuximab resistance.
Assuntos
Afatinib/farmacologia , Cetuximab/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-4/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Concentração Inibidora 50 , Oxigênio/farmacologia , Receptor ErbB-2/metabolismo , Receptor ErbB-4/metabolismoRESUMO
Aberrant signaling of the epidermal growth factor receptor (EGFR) plays a crucial role in the tumorigenesis of many cancer types, including head and neck squamous cell carcinoma (HNSCC), making it a compelling drug target. After initial promising results of EGFR-targeted therapies such as cetuximab, the problem of therapeutic resistance is emerging and new treatment options are necessary. In contrast to first-generation EGFR inhibitors, MEHD7945A (duligotuzumab) is a monoclonal antibody with dual EGFR/HER3 specificity. Consequently, treatment with MEHD7945A may result in a more pronounced therapeutic benefit. In this study, sensitivity to MEHD7945A as a single agent and in combination with cisplatin was investigated in cetuximab-sensitive and -resistant HNSCC cell lines under normal and reduced oxygen conditions. The results demonstrated that sensitivity to MEHD7945A was cell line dependent and influenced by oxygen concentration. An additive, but not synergistic, interaction between MEHD7945A and cisplatin was observed. In conclusion, MEHD7945A has the potential to partially overcome cetuximab resistance. Nevertheless, further research is warranted to determine additional resistance mechanisms to cetuximab treatment besides HER3 signaling. Unraveling these mechanisms will ultimately lead to the development of new therapeutic strategies to improve the response to EGFR blockage.