Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(9): 1770-1798, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565950

RESUMO

The cancer epigenome has been studied in cells cultured in two-dimensional (2D) monolayers, but recent studies highlight the impact of the extracellular matrix and the three-dimensional (3D) environment on multiple cellular functions. Here, we report the physical, biochemical, and genomic differences between T47D breast cancer cells cultured in 2D and as 3D spheroids. Cells within 3D spheroids exhibit a rounder nucleus with less accessible, more compacted chromatin, as well as altered expression of ~2000 genes, the majority of which become repressed. Hi-C analysis reveals that cells in 3D are enriched for regions belonging to the B compartment, have decreased chromatin-bound CTCF and increased fusion of topologically associating domains (TADs). Upregulation of the Hippo pathway in 3D spheroids results in the activation of the LATS1 kinase, which promotes phosphorylation and displacement of CTCF from DNA, thereby likely causing the observed TAD fusions. 3D cells show higher chromatin binding of progesterone receptor (PR), leading to an increase in the number of hormone-regulated genes. This effect is in part mediated by LATS1 activation, which favors cytoplasmic retention of YAP and CTCF removal.


Assuntos
Neoplasias da Mama , Fator de Ligação a CCCTC , Cromatina , Proteínas Serina-Treonina Quinases , Humanos , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Cromatina/metabolismo , Cromatina/genética , Feminino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Via de Sinalização Hippo
2.
Mol Cell ; 77(3): 475-487.e11, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31759822

RESUMO

How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18). This facilitates the contacts of AEs with distant CTCF sites near promoter of other cell-cycle genes, which also become hyperacetylated at H3K18. These changes ensure basal transcription of cell-cycle genes and are critical for their re-activation upon serum re-exposure. Our study reveals how direct manipulation of the epigenetic state of AEs by a general transcription factor regulates 3D genome folding and expression.


Assuntos
Elementos Alu/fisiologia , Histonas/metabolismo , Fatores de Transcrição TFIII/metabolismo , Acetilação , Elementos Alu/genética , Linhagem Celular , Cromatina/metabolismo , Cromatina/fisiologia , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Histonas/genética , Proteínas de Homeodomínio/genética , Humanos , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional , RNA Polimerase III/metabolismo , Fatores de Transcrição TFIII/genética , Transcrição Gênica/genética
3.
Mol Cell ; 73(1): 84-96.e7, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472187

RESUMO

The post-translational modification of key residues at the C-terminal domain of RNA polymerase II (RNAP2-CTD) coordinates transcription, splicing, and RNA processing by modulating its capacity to act as a landing platform for a variety of protein complexes. Here, we identify a new modification at the CTD, the deimination of arginine and its conversion to citrulline by peptidyl arginine deiminase 2 (PADI2), an enzyme that has been associated with several diseases, including cancer. We show that, among PADI family members, only PADI2 citrullinates R1810 (Cit1810) at repeat 31 of the CTD. Depletion of PADI2 or loss of R1810 results in accumulation of RNAP2 at transcription start sites, reduced gene expression, and inhibition of cell proliferation. Cit1810 is needed for interaction with the P-TEFb (positive transcription elongation factor b) kinase complex and for its recruitment to chromatin. In this way, CTD-Cit1810 favors RNAP2 pause release and efficient transcription in breast cancer cells.


Assuntos
Neoplasias da Mama/enzimologia , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , Transcrição Gênica , Arginina , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Citrulinação , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Proteína-Arginina Desiminase do Tipo 2 , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , RNA Polimerase II/química , RNA Polimerase II/genética , Transdução de Sinais
5.
Cell Mol Life Sci ; 81(1): 98, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386110

RESUMO

In hormone-responsive breast cancer cells, progesterone (P4) has been shown to act via its nuclear receptor (nPR), a ligand-activated transcription factor. A small fraction of progesterone receptor is palmitoylated and anchored to the cell membrane (mbPR) forming a complex with estrogen receptor alpha (ERα). Upon hormone exposure, either directly or via interaction with ERα, mbPR activates the SRC/RAS/ERK kinase pathway leading to phosphorylation of nPR by ERK. Kinase activation is essential for P4 gene regulation, as the ERK and MSK1 kinases are recruited by the nPR to its genomic binding sites and trigger chromatin remodeling. An interesting open question is whether activation of mbPR can result in gene regulation in the absence of ligand binding to intracellular progesterone receptor (iPR). This matter has been investigated in the past using P4 attached to serum albumin, but the attachment is leaky and albumin can be endocytosed and degraded, liberating P4. Here, we propose a more stringent approach to address this issue by ensuring attachment of P4 to the cell membrane via covalent binding to a stable phospholipid. This strategy identifies the actions of P4 independent from hormone binding to iPR. We found that a membrane-attached progestin can activate mbPR, the ERK signaling pathway leading to iPR phosphorylation, initial gene regulation and entry into the cell cycle, in the absence of detectable intracellular progestin.


Assuntos
Neoplasias , Progesterona , Progesterona/farmacologia , Receptores de Progesterona/genética , Receptor alfa de Estrogênio , Progestinas/farmacologia , Ligantes , Membrana Celular
6.
Proc Natl Acad Sci U S A ; 119(31): e2200667119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881789

RESUMO

Liquid-liquid phase separation (LLPS) is emerging as a key physical principle for biological organization inside living cells, forming condensates that play important regulatory roles. Inside living nuclei, transcription factor (TF) condensates regulate transcriptional initiation and amplify the transcriptional output of expressed genes. However, the biophysical parameters controlling TF condensation are still poorly understood. Here we applied a battery of single-molecule imaging, theory, and simulations to investigate the physical properties of TF condensates of the progesterone receptor (PR) in living cells. Analysis of individual PR trajectories at different ligand concentrations showed marked signatures of a ligand-tunable LLPS process. Using a machine learning architecture, we found that receptor diffusion within condensates follows fractional Brownian motion resulting from viscoelastic interactions with chromatin. Interestingly, condensate growth dynamics at shorter times is dominated by Brownian motion coalescence (BMC), followed by a growth plateau at longer timescales that result in nanoscale condensate sizes. To rationalize these observations, we extended on the BMC model by including the stochastic unbinding of particles within condensates. Our model reproduced the BMC behavior together with finite condensate sizes at the steady state, fully recapitulating our experimental data. Overall, our results are consistent with condensate growth dynamics being regulated by the escaping probability of PR molecules from condensates. The interplay between condensation assembly and molecular escaping maintains an optimum physical condensate size. Such phenomena must have implications for the biophysical regulation of other nuclear condensates and could also operate in multiple biological scenarios.


Assuntos
Condensados Biomoleculares , Núcleo Celular , Receptores de Progesterona , Imagem Individual de Molécula , Fatores de Transcrição , Condensados Biomoleculares/química , Núcleo Celular/química , Cromatina/química , Ligantes , Aprendizado de Máquina , Movimento (Física) , Receptores de Progesterona/química , Fatores de Transcrição/química
7.
Trends Biochem Sci ; 44(7): 565-574, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31072688

RESUMO

Misregulation of the processes controlling eukaryotic gene expression can result in disease. Gene expression is influenced by the surrounding chromatin; hence the nuclear environment is also of vital importance. Recently, understanding of chromatin hierarchical folding has increased together with the discovery of membrane-less organelles which are distinct, dynamic liquid droplets that merge and expand within the nucleus. These 'sieve'-like regions may compartmentalize and separate functionally distinct regions of chromatin. This article aims to discuss recent studies on nuclear phase within the context of poly(ADP-ribose), ATP, and Mg2+ levels, and we propose a combinatorial complex role for these molecules in phase separation and genome regulation. We also discuss the implications of this process for gene regulation and discuss possible strategies to test this.


Assuntos
Trifosfato de Adenosina/metabolismo , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genoma Humano , Magnésio/metabolismo , Humanos
8.
EMBO J ; 38(18): e101426, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31373033

RESUMO

Steroid hormones are key gene regulators in breast cancer cells. While estrogens stimulate cell proliferation, progestins activate a single cell cycle followed by proliferation arrest. Here, we use biochemical and genome-wide approaches to show that progestins achieve this effect via a functional crosstalk with C/EBPα. Using ChIP-seq, we identify around 1,000 sites where C/EBPα binding precedes and helps binding of progesterone receptor (PR) in response to hormone. These regions exhibit epigenetic marks of active enhancers, and C/EBPα maintains an open chromatin conformation that facilitates loading of ligand-activated PR. Prior to hormone exposure, C/EBPα favors promoter-enhancer contacts that assure hormonal regulation of key genes involved in cell proliferation by facilitating binding of RAD21, YY1, and the Mediator complex. Knockdown of C/EBPα disrupts enhancer-promoter contacts and decreases the presence of these architectural proteins, highlighting its key role in 3D chromatin looping. Thus, C/EBPα fulfills a previously unknown function as a potential growth modulator in hormone-dependent breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Receptores de Progesterona/metabolismo , Animais , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Camundongos , Transplante de Neoplasias , Progestinas/farmacologia , Regiões Promotoras Genéticas , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Transcrição YY1/metabolismo
9.
Nucleic Acids Res ; 49(22): 12716-12731, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34850111

RESUMO

Here, we report that in T47D breast cancer cells 50 pM progestin is sufficient to activate cell cycle entry and the progesterone gene expression program. At this concentration, equivalent to the progesterone blood levels found around the menopause, progesterone receptor (PR) binds only to 2800 genomic sites, which are accessible to ATAC cleavage prior to hormone exposure. These highly accessible sites (HAs) are surrounded by well-organized nucleosomes and exhibit breast enhancer features, including estrogen receptor alpha (ERα), higher FOXA1 and BRD4 (bromodomain containing 4) occupancy. Although HAs are enriched in RAD21 and CTCF, PR binding is the driving force for the most robust interactions with hormone-regulated genes. HAs show higher frequency of 3D contacts among themselves than with other PR binding sites, indicating colocalization in similar compartments. Gene regulation via HAs is independent of classical coregulators and ATP-activated remodelers, relying mainly on MAP kinase activation that enables PR nuclear engagement. HAs are also preferentially occupied by PR and ERα in breast cancer xenografts derived from MCF-7 cells as well as from patients, indicating their potential usefulness as targets for therapeutic intervention.


Assuntos
Neoplasias da Mama/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Progestinas/fisiologia , Animais , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Cromatina , Receptor alfa de Estrogênio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Camundongos , Promegestona/farmacologia , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
10.
Genome Res ; 29(1): 18-28, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30523037

RESUMO

Nuclear architecture is decisive for the assembly of transcriptional responses. However, how chromosome organization is dynamically modulated to permit rapid and transient transcriptional changes in response to environmental challenges remains unclear. Here we show that hyperosmotic stress disrupts different levels of chromosome organization, ranging from A/B compartment changes to reduction in the number and insulation of topologically associating domains (TADs). Concomitantly, transcription is greatly affected, TAD borders weaken, and RNA Polymerase II runs off from hundreds of transcription end sites. Stress alters the binding profiles of architectural proteins, which explains the disappearance of local chromatin organization. These processes are dynamic, and cells rapidly reconstitute their default chromatin conformation after stress removal, uncovering an intrinsic organization. Transcription is not required for local chromatin reorganization, while compartment recovery is partially transcription-dependent. Thus, nuclear organization in mammalian cells can be rapidly modulated by environmental changes in a reversible manner.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Pressão Osmótica , RNA Polimerase II/metabolismo , Transcrição Gênica , Linhagem Celular , Humanos
11.
Genome Res ; 29(1): 29-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30552103

RESUMO

In breast cancer cells, some topologically associating domains (TADs) behave as hormonal gene regulation units, within which gene transcription is coordinately regulated in response to steroid hormones. Here we further describe that responsive TADs contain 20- to 100-kb-long clusters of intermingled estrogen receptor (ESR1) and progesterone receptor (PGR) binding sites, hereafter called hormone-control regions (HCRs). In T47D cells, we identified more than 200 HCRs, which are frequently bound by unliganded ESR1 and PGR. These HCRs establish steady long-distance inter-TAD interactions between them and organize characteristic looping structures with promoters in their TADs even in the absence of hormones in ESR1+-PGR+ cells. This organization is dependent on the expression of the receptors and is further dynamically modulated in response to steroid hormones. HCRs function as platforms that integrate different signals, resulting in some cases in opposite transcriptional responses to estrogens or progestins. Altogether, these results suggest that steroid hormone receptors act not only as hormone-regulated sequence-specific transcription factors but also as local and global genome organizers.


Assuntos
Receptor alfa de Estrogênio/biossíntese , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Progesterona/farmacologia , Receptores de Progesterona/biossíntese , Elementos de Resposta , Transdução de Sinais/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Humanos , Células MCF-7 , Receptores de Progesterona/genética
12.
Nucleic Acids Res ; 48(8): 4147-4160, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32103264

RESUMO

Linker histones H1 are principal chromatin components, whose contribution to the epigenetic regulation of chromatin structure and function is not fully understood. In metazoa, specific linker histones are expressed in the germline, with female-specific H1s being normally retained in the early-embryo. Embryonic H1s are present while the zygotic genome is transcriptionally silent and they are replaced by somatic variants upon activation, suggesting a contribution to transcriptional silencing. Here we directly address this question by ectopically expressing dBigH1 in Drosophila S2 cells, which lack dBigH1. We show that dBigH1 binds across chromatin, replaces somatic dH1 and reduces nucleosome repeat length (NRL). Concomitantly, dBigH1 expression down-regulates gene expression by impairing RNApol II binding and histone acetylation. These effects depend on the acidic N-terminal ED-domain of dBigH1 since a truncated form lacking this domain binds across chromatin and replaces dH1 like full-length dBigH1, but it does not affect NRL either transcription. In vitro reconstitution experiments using Drosophila preblastodermic embryo extracts corroborate these results. Altogether these results suggest that the negatively charged N-terminal tail of dBigH1 alters the functional state of active chromatin compromising transcription.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Inativação Gênica , Histonas/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Código das Histonas , Histonas/química , Domínios Proteicos , RNA Polimerase II/metabolismo
13.
Genes Dev ; 28(19): 2151-62, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274727

RESUMO

The human genome is segmented into topologically associating domains (TADs), but the role of this conserved organization during transient changes in gene expression is not known. Here we describe the distribution of progestin-induced chromatin modifications and changes in transcriptional activity over TADs in T47D breast cancer cells. Using ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing), Hi-C (chromosome capture followed by high-throughput sequencing), and three-dimensional (3D) modeling techniques, we found that the borders of the ∼ 2000 TADs in these cells are largely maintained after hormone treatment and that up to 20% of the TADs could be considered as discrete regulatory units where the majority of the genes are either transcriptionally activated or repressed in a coordinated fashion. The epigenetic signatures of the TADs are homogeneously modified by hormones in correlation with the transcriptional changes. Hormone-induced changes in gene activity and chromatin remodeling are accompanied by differential structural changes for activated and repressed TADs, as reflected by specific and opposite changes in the strength of intra-TAD interactions within responsive TADs. Indeed, 3D modeling of the Hi-C data suggested that the structure of TADs was modified upon treatment. The differential responses of TADs to progestins and estrogens suggest that TADs could function as "regulons" to enable spatially proximal genes to be coordinately transcribed in response to hormones.


Assuntos
Cromatina/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Progestinas/farmacologia , Linhagem Celular Tumoral , Cromatina/química , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Hormônios/farmacologia , Humanos
14.
Mol Cell ; 49(1): 67-79, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23177737

RESUMO

Elucidating the global function of a transcription factor implies the identification of its target genes and genomic binding sites. The role of chromatin in this context is unclear, but the dominant view is that factors bind preferentially to nucleosome-depleted regions identified as DNaseI-hypersensitive sites (DHS). Here we show by ChIP, MNase, and DNaseI assays followed by deep sequencing that the progesterone receptor (PR) requires nucleosomes for optimal binding and function. In breast cancer cells treated with progestins, we identified 25,000 PR binding sites (PRbs). The majority of these sites encompassed several copies of the hexanucleotide TGTYCY, which is highly abundant in the genome. We found that functional PRbs accumulate around progesterone-induced genes, mainly in enhancers. Most of these sites overlap with DHS but exhibit high nucleosome occupancy. Progestin stimulation results in remodeling of these nucleosomes with displacement of histones H1 and H2A/H2B dimers. Our results strongly suggest that nucleosomes are crucial for PR binding and hormonal gene regulation.


Assuntos
Nucleossomos/metabolismo , Receptores de Progesterona/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Sequência Consenso , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Humanos , Nucleossomos/fisiologia , Progestinas/fisiologia , Ligação Proteica , Elementos de Resposta , Análise de Sequência de DNA
15.
Genes Dev ; 27(10): 1179-97, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23699411

RESUMO

A close chromatin conformation precludes gene expression in eukaryotic cells. Genes activated by external cues have to overcome this repressive state by locally changing chromatin structure to a more open state. Although much is known about hormonal gene activation, how basal repression of regulated genes is targeted to the correct sites throughout the genome is not well understood. Here we report that in breast cancer cells, the unliganded progesterone receptor (PR) binds genomic sites and targets a repressive complex containing HP1γ (heterochromatin protein 1γ), LSD1 (lysine-specific demethylase 1), HDAC1/2, CoREST (corepressor for REST [RE1 {neuronal repressor element 1} silencing transcription factor]), KDM5B, and the RNA SRA (steroid receptor RNA activator) to 20% of hormone-inducible genes, keeping these genes silenced prior to hormone treatment. The complex is anchored via binding of HP1γ to H3K9me3 (histone H3 tails trimethylated on Lys 9). SRA interacts with PR, HP1γ, and LSD1, and its depletion compromises the loading of the repressive complex to target chromatin-promoting aberrant gene derepression. Upon hormonal treatment, the HP1γ-LSD1 complex is displaced from these constitutively poorly expressed genes as a result of rapid phosphorylation of histone H3 at Ser 10 mediated by MSK1, which is recruited to the target sites by the activated PR. Displacement of the repressive complex enables the loading of coactivators needed for chromatin remodeling and activation of this set of genes, including genes involved in apoptosis and cell proliferation. These results highlight the importance of the unliganded PR in hormonal regulation of breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Complexos Multiproteicos/metabolismo , Progesterona/metabolismo , RNA Longo não Codificante/metabolismo , Receptores de Progesterona/metabolismo , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica/efeitos dos fármacos , Genoma Humano/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Ligantes , Vírus do Tumor Mamário do Camundongo/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/efeitos dos fármacos , Fosforilação , Progesterona/farmacologia , RNA Longo não Codificante/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
16.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668737

RESUMO

Despite global research efforts, breast cancer remains the leading cause of cancer death in women worldwide. The majority of these deaths are due to metastasis occurring years after the initial treatment of the primary tumor and occurs at a higher frequency in hormone receptor-positive (Estrogen and Progesterone; HR+) breast cancers. We have previously described the role of NUDT5 (Nudix-linked to moiety X-5) in HR+ breast cancer progression, specifically with regards to the growth of breast cancer stem cells (BCSCs). BCSCs are known to be the initiators of epithelial-to-mesenchyme transition (EMT), metastatic colonization, and growth. Therefore, a greater understanding of the proteins and signaling pathways involved in the metastatic process may open the door for therapeutic opportunities. In this review, we discuss the role of NUDT5 and other members of the NUDT family of enzymes in breast and other cancer types. We highlight the use of global omics data based on our recent phosphoproteomic analysis of progestin signaling pathways in breast cancer cells and how this experimental approach provides insight into novel crosstalk mechanisms for stratification and drug discovery projects aiming to treat patients with aggressive cancer.


Assuntos
Neoplasias da Mama/enzimologia , Enzimas Reparadoras do DNA/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Descoberta de Drogas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais
17.
EMBO J ; 35(16): 1822-43, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27390128

RESUMO

Eukaryotic gene regulation is associated with changes in chromatin compaction that modulate access to DNA regulatory sequences relevant for transcriptional activation or repression. Although much is known about the mechanism of chromatin remodeling in hormonal gene activation, how repression is accomplished is much less understood. Here we report that in breast cancer cells, ligand-activated progesterone receptor (PR) is directly recruited to transcriptionally repressed genes involved in cell proliferation along with the kinases ERK1/2 and MSK1. PR recruits BRG1 associated with the HP1γ-LSD1 complex repressor complex, which is further anchored via binding of HP1γ to the H3K9me3 signal deposited by SUV39H2. In contrast to what is observed during gene activation, only BRG1 and not the BAF complex is recruited to repressed promoters, likely due to local enrichment of the pioneer factor FOXA1. BRG1 participates in gene repression by interacting with H1.2, facilitating its deposition and stabilizing nucleosome positioning around the transcription start site. Our results uncover a mechanism of hormone-dependent transcriptional repression and a novel role for BRG1 in progestin regulation of breast cancer cell growth.


Assuntos
DNA Helicases/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Hormônios/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Humanos , Ligação Proteica
18.
Nature ; 506(7487): 235-9, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24336202

RESUMO

CCAAT/enhancer binding protein-α (C/EBPα) induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem (iPS) cells when co-expressed with the transcription factors Oct4 (Pou5f1), Sox2, Klf4 and Myc (hereafter called OSKM). However, how C/EBPα accomplishes these effects is unclear. Here we find that in mouse primary B cells transient C/EBPα expression followed by OSKM activation induces a 100-fold increase in iPS cell reprogramming efficiency, involving 95% of the population. During this conversion, pluripotency and epithelial-mesenchymal transition genes become markedly upregulated, and 60% of the cells express Oct4 within 2 days. C/EBPα acts as a 'path-breaker' as it transiently makes the chromatin of pluripotency genes more accessible to DNase I. C/EBPα also induces the expression of the dioxygenase Tet2 and promotes its translocation to the nucleus where it binds to regulatory regions of pluripotency genes that become demethylated after OSKM induction. In line with these findings, overexpression of Tet2 enhances OSKM-induced B-cell reprogramming. Because the enzyme is also required for efficient C/EBPα-induced immune cell conversion, our data indicate that Tet2 provides a mechanistic link between iPS cell reprogramming and B-cell transdifferentiation. The rapid iPS reprogramming approach described here should help to fully elucidate the process and has potential clinical applications.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Transdiferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Células Cultivadas , Reprogramação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Citosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/metabolismo , Dioxigenases , Transição Epitelial-Mesenquimal/genética , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Regulação para Cima/genética
19.
Nucleic Acids Res ; 46(8): e49, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29394371

RESUMO

The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb.


Assuntos
Cariótipo Anormal , Animais , Composição de Bases , Viés , Linhagem Celular , Aberrações Cromossômicas , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , Simulação por Computador , Variações do Número de Cópias de DNA , Técnicas Genéticas , Humanos , Cadeias de Markov , Camundongos , Modelos Estatísticos , Reprodutibilidade dos Testes
20.
Genes Dev ; 26(17): 1972-83, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22948662

RESUMO

Eukaryotic gene regulation implies that transcription factors gain access to genomic information via poorly understood processes involving activation and targeting of kinases, histone-modifying enzymes, and chromatin remodelers to chromatin. Here we report that progestin gene regulation in breast cancer cells requires a rapid and transient increase in poly-(ADP)-ribose (PAR), accompanied by a dramatic decrease of cellular NAD that could have broad implications in cell physiology. This rapid increase in nuclear PARylation is mediated by activation of PAR polymerase PARP-1 as a result of phosphorylation by cyclin-dependent kinase CDK2. Hormone-dependent phosphorylation of PARP-1 by CDK2, within the catalytic domain, enhances its enzymatic capabilities. Activated PARP-1 contributes to the displacement of histone H1 and is essential for regulation of the majority of hormone-responsive genes and for the effect of progestins on cell cycle progression. Both global chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) and gene expression analysis show a strong overlap between PARP-1 and CDK2. Thus, progestin gene regulation involves a novel signaling pathway that connects CDK2-dependent activation of PARP-1 with histone H1 displacement. Given the multiplicity of PARP targets, this new pathway could be used for the pharmacological management of breast cancer.


Assuntos
Neoplasias da Mama/enzimologia , Quinase 2 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Modelos Moleculares , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Progestinas/farmacologia , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa