Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418299

RESUMO

CutRS was the first two-component system to be identified in Streptomyces species and is highly conserved in this genus. It was reported >25 years ago that deletion of cutRS increases the production of the antibiotic actinorhodin in Streptomyces coelicolor. However, despite this early work, the function of CutRS has remained enigmatic until now. Here we show that deletion of cutRS upregulates the production of the actinorhodin biosynthetic enzymes up to 300-fold, explaining the increase in actinorhodin production. However, while ChIP-seq identified 85 CutR binding sites in S. coelicolor none of these are in the actinorhodin biosynthetic gene cluster, meaning the effect is indirect. The directly regulated CutR targets identified in this study are implicated in extracellular protein folding, including two of the four highly conserved HtrA-family foldases: HtrA3 and HtrB, and a putative VKOR enzyme, which is predicted to recycle DsbA following its catalysis of disulphide bond formation in secreted proteins. Thus, we tentatively propose a role for CutRS in sensing and responding to protein misfolding outside the cell. Since actinorhodin can oxidise cysteine residues and induce disulphide bond formation in proteins, its over production in the ∆cutRS mutant may be a response to protein misfolding on the extracellular face of the membrane.


Assuntos
Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/genética , Streptomyces/metabolismo , Antibacterianos/farmacologia , Dissulfetos/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Curr Opin Microbiol ; 76: 102385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804816

RESUMO

Throughout the golden age of antibiotic discovery, Streptomyces have been unsurpassed for their ability to produce bioactive metabolites. Yet, this success has been hampered by rediscovery. As we enter a new stage of biodiscovery, omics data and existing scientific repositories can enable informed choices on the biodiversity that may yield novel antibiotics. Here, we focus on the chemical potential of rare actinomycetes, defined as bacteria within the order Actinomycetales, but not belonging to the genus Streptomyces. They are named as such due to their less-frequent isolation under standard laboratory practices, yet there is increasing evidence to suggest these biologically diverse genera harbour considerable biosynthetic and chemical diversity. In this review, we focus on examples of successful isolation and genera that have been the focus of more concentrated biodiscovery efforts, we survey the representation of rare actinomycete taxa, compared with Streptomyces, across natural product data repositories in addition to its biosynthetic potential. This is followed by an overview of clinically useful drugs produced by rare actinomycetes and considerations for future biodiscovery efforts. There is much to learn about these underexplored taxa, and mounting evidence suggests that they are a fruitful avenue for the discovery of novel antimicrobials.


Assuntos
Actinobacteria , Streptomyces , Actinobacteria/genética , Actinobacteria/metabolismo , Actinomyces , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Streptomyces/genética , Biodiversidade
3.
FEMS Microbiol Lett ; 365(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29579234

RESUMO

Pseudomonas baetica strain a390T is the type strain of this recently described species and here we present its high-contiguity draft genome. To celebrate the 16th International Conference on Pseudomonas, the genome of P. baetica strain a390T was sequenced using a unique combination of Ion Torrent semiconductor and Oxford Nanopore methods as part of a collaborative community-led project. The use of high-quality Ion Torrent sequences with long Nanopore reads gave rapid, high-contiguity and -quality, 16-contig genome sequence. Whole genome phylogenetic analysis places P. baetica within the P. koreensis clade of the P. fluorescens group. Comparison of the main genomic features of P. baetica with a variety of other Pseudomonas spp. suggests that it is a highly adaptable organism, typical of the genus. This strain was originally isolated from the liver of a diseased wedge sole fish, and genotypic and phenotypic analyses show that it is tolerant to osmotic stress and to oxytetracycline.


Assuntos
Doenças dos Peixes/microbiologia , Genômica/métodos , Infecções por Pseudomonas/veterinária , Pseudomonas/genética , Análise de Sequência de DNA/métodos , Animais , Genoma Bacteriano , Genômica/instrumentação , Nanoporos , Fenótipo , Filogenia , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Infecções por Pseudomonas/microbiologia , Semicondutores , Análise de Sequência de DNA/instrumentação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa