Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(9): 3655-3661, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629852

RESUMO

The archetypal single electron transfer reductant, samarium(II) diiodide (SmI2, Kagan's reagent), remains one of the most important reducing agents and mediators of radical chemistry after four decades of widespread use in synthesis. While the chemistry of SmI2 is very often unique, and thus the reagent is indispensable, it is almost invariably used in superstoichiometric amounts, thus raising issues of cost and waste. Of the few reports of the use of catalytic SmI2, all require the use of superstoichiometric amounts of a metal coreductant to regenerate Sm(II). Here, we describe a SmI2-catalyzed intermolecular radical coupling of aryl cyclopropyl ketones and alkynes. The process shows broad substrate scope and delivers a library of decorated cyclopentenes with loadings of SmI2 as low as 15 mol %. The radical relay strategy negates the need for a superstoichiometric coreductant and additives to regenerate SmI2. Crucially, our study uncovers an intriguing link between ketone conformation and efficient cross-coupling and thus provides an insight into the mechanism of radical relays involving SmI2. The study lays further groundwork for the future use of the classical reagent SmI2 in contemporary radical catalysis.

2.
Chemistry ; 26(49): 11141-11145, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428278

RESUMO

C-O bond activation of DPEphos occurs upon mild heating in the presence of [Ru(NHC)2 (PPh3 )2 H2 ] (NHC=N-heterocyclic carbene) to form phosphinophenolate products. When NHC=IEt2 Me2 , C-O activation is accompanied by C-N activation of an NHC ligand to yield a coordinated N-phosphino-functionalised carbene. DFT calculations define a nucleophilic mechanism in which a hydride ligand attacks the aryl carbon of the DPEphos C-O bond. This is promoted by the strongly donating NHC ligands which render a trans dihydride intermediate featuring highly nucleophilic hydride ligands accessible. C-O bond activation also occurs upon heating cis-[Ru(DPEphos)2 H2 ]. DFT calculations suggest this reaction is promoted by the steric encumbrance associated with two bulky DPEphos ligands. Our observations that facile degradation of the DPEphos ligand via C-O bond activation is possible under relatively mild reaction conditions has potential ramifications for the use of this ligand in high-temperature catalysis.

3.
J Am Chem Soc ; 140(4): 1481-1495, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29286647

RESUMO

A systematic study of the catalyst structure and overall charge for the dehydropolymerization of H3B·NMeH2 to form N-methyl polyaminoborane is reported using catalysts based upon neutral and cationic {Rh(Xantphos-R)} fragments in which PR2 groups are selected from Et, iPr, and tBu. The most efficient systems are based upon {Rh(Xantphos-iPr)}, i.e., [Rh(κ3-P,O,P-Xantphos-iPr)(H)2(η1-H3B·NMe3)][BArF4], 6, and Rh(κ3-P,O,P-Xantphos-iPr)H, 11. While H2 evolution kinetics show both are fast catalysts (ToF ≈ 1500 h-1) and polymer growth kinetics for dehydropolymerization suggest a classical chain growth process for both, neutral 11 (Mn = 28 000 g mol-1, D = 1.9) promotes significantly higher degrees of polymerization than cationic 6 (Mn = 9000 g mol-1, D = 2.9). For 6 isotopic labeling studies suggest a rate-determining NH activation, while speciation studies, coupled with DFT calculations, show the formation of a dimetalloborylene [{Rh(κ3-P,O,P-Xantphos-iPr)}2B]+ as the, likely dormant, end product of catalysis. A dual mechanism is proposed for dehydropolymerization in which neutral hydrides (formed by hydride transfer in cationic 6 to form a boronium coproduct) are the active catalysts for dehydrogenation to form aminoborane. Contemporaneous chain-growth polymer propagation is suggested to occur on a separate metal center via head-to-tail end chain B-N bond formation of the aminoborane monomer, templated by an aminoborohydride motif on the metal.

4.
J Am Chem Soc ; 138(26): 8212-20, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27286231

RESUMO

Di-tert-butyliminoborane is found to be a very useful synthon for the synthesis of a variety of functionalized 1,4-azaborinines by the Rh-mediated cyclization of iminoboranes with alkynes. The reactions proceed via [2 + 2] cycloaddition of iminoboranes and alkynes in the presence of [RhCl(PiPr3)2]2, which gives a rhodium η(4)-1,2-azaborete complex that yields 1,4-azaborinines upon reaction with acetylene. This reaction is compatible with substrates containing more than one alkynyl unit, cleanly affording compounds containing multiple 1,4-azaborinines. The substitution of terminal alkynes for acetylene also led to 1,4-azaborinines, enabling ring substitution at a predetermined location. We report the first general synthesis of this new methodology, which provides highly regioselective access to valuable 1,4-azaborinines in moderate yields. A mechanistic rationale for this reaction is supported by DFT calculations, which show the observed regioselectivity to arise from steric effects in the B-C bond coupling en route to the rhodium η(4)-1,2-azaborete complex and the selective oxidative cleavage of the B-N bond of the 1,2-azaborete ligand in its subsequent reaction with acetylene.

5.
Angew Chem Int Ed Engl ; 55(23): 6651-6, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27100775

RESUMO

The µ-amino-borane complexes [Rh2 (L(R) )2 (µ-H)(µ-H2 B=NHR')][BAr(F) 4 ] (L(R) =R2 P(CH2 )3 PR2 ; R=Ph, (i) Pr; R'=H, Me) form by addition of H3 B⋅NMeR'H2 to [Rh(L(R) )(η(6) -C6 H5 F)][BAr(F) 4 ]. DFT calculations demonstrate that the amino-borane interacts with the Rh centers through strong Rh-H and Rh-B interactions. Mechanistic investigations show that these dimers can form by a boronium-mediated route, and are pre-catalysts for amine-borane dehydropolymerization, suggesting a possible role for bimetallic motifs in catalysis.

6.
Angew Chem Int Ed Engl ; 55(30): 8706-10, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27254776

RESUMO

Three isomers of [(Cp*Ru)2 C2 B10 H12 ], the first examples of 14-vertex heteroboranes containing 14-skeletal electron pairs, have been synthesized by the direct electrophilic insertion of a {Cp*Ru(+) } fragment into the anion [4-Cp*-4,1,6-RuC2 B10 H12 ](-) . All three compounds have the same unique polyhedral structure having an approximate Cs symmetry and featuring a four-atom trapezoidal face. X-ray diffraction studies could confidently identify only one of the two cage C atoms in each structure. The other C atom position has been established by a combination of i) best fitting of computed and experimental (11) B and (1) H NMR chemical shifts, and ii) consideration of the lowest computed energy for series of isomers studied by DFT calculations. In all three isomers, one cage C atom occupies a degree-4 vertex on the short parallel edge of the trapezium.

7.
ACS Catal ; 9(4): 3657-3666, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30984472

RESUMO

[Rh(κ2-PP-DPEphos){η2η2-H2B(NMe3)(CH2)2 tBu}][BArF 4] acts as an effective precatalyst for the dehydropolymerization of H3B·NMeH2 to form N-methylpolyaminoborane (H2BNMeH) n . Control of polymer molecular weight is achieved by variation of precatalyst loading (0.1-1 mol %, an inverse relationship) and use of the chain-modifying agent H2: with M n ranging between 5 500 and 34 900 g/mol and D between 1.5 and 1.8. H2 evolution studies (1,2-F2C6H4 solvent) reveal an induction period that gets longer with higher precatalyst loading and complex kinetics with a noninteger order in [Rh]TOTAL. Speciation studies at 10 mol % indicate the initial formation of the amino-borane bridged dimer, [Rh2(κ2-PP-DPEphos)2(µ-H)(µ-H2BN=HMe)][BArF 4], followed by the crystallographically characterized amidodiboryl complex [Rh2(cis-κ2-PP-DPEphos)2(σ,µ-(H2B)2NHMe)][BArF 4]. Adding ∼2 equiv of NMeH2 in tetrahydrofuran (THF) solution to the precatalyst removes this induction period, pseudo-first-order kinetics are observed, a half-order relationship to [Rh]TOTAL is revealed with regard to dehydrogenation, and polymer molecular weights are increased (e.g., M n = 40 000 g/mol). Speciation studies suggest that NMeH2 acts to form the  precatalysts [Rh(κ2-DPEphos)(NMeH2)2][BArF 4] and [Rh(κ2-DPEphos)(H)2(NMeH2)2][BArF 4], which were independently synthesized and shown to follow very similar dehydrogenation kinetics, and produce polymers of molecular weight comparable with [Rh(κ2-PP-DPEphos){η2-H2B(NMe3)(CH2)2 tBu}][BArF 4], which has been doped with amine. This promoting effect of added amine in situ is shown to be general in other cationic Rh-based systems, and possible mechanistic scenarios are discussed.

8.
Dalton Trans ; 48(39): 14724-14736, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31538996

RESUMO

The σ-amine-borane pincer complex [Rh(PONOP)(η1-H3B·NMe3)][BArF4] [2, PONOP = κ3-NC5H3-2,6-(OPtBu2)2] is prepared by addition of H3B·NMe3 to the dihydrogen precursor [Rh(PONOP)(η2-H2)][BArF4], 1. In a similar way the related H3B·NMe2H complex [Rh(PONOP)(η1-H3B·NMe2H)][BArF4], 3, can be made in situ, but this undergoes dehydrocoupling to reform 1 and give the aminoborane dimer [H2BNMe2]2. NMR studies on this system reveal an intermediate neutral hydride forms, Rh(PONOP)H, 4, that has been prepared independently. 1 is a competent catalyst (2 mol%, ∼30 min) for the dehydrocoupling of H3B·Me2H. Kinetic, mechanistic and computational studies point to the role of NMe2H in both forming the neutral hydride, via deprotonation of a σ-amine-borane complex and formation of aminoborane, and closing the catalytic cycle by reprotonation of the hydride by the thus-formed dimethyl ammonium [NMe2H2]+. Competitive processes involving the generation of boronium [H2B(NMe2H)2]+ are also discussed, but shown to be higher in energy. Off-cycle adducts between [NMe2H2]+ or [H2B(NMe2H)2]+ and amine-boranes are also discussed that act to modify the kinetics of dehydrocoupling.

10.
Chem Sci ; 7(3): 2414-2426, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997783

RESUMO

We report a detailed, combined experimental and computational study on the fundamental B-H and P-H bond activation steps involved in the dehydrocoupling/dehydropolymerization of primary and secondary phosphine-boranes, H3B·PPhR'H (R = Ph, H), using [RhCp*(PMe3)Me(ClCH2Cl)][BArF4], to either form polyphosphino-boranes [H2B·PPhH] n (Mn ∼ 15 000 g mol-1, PDI = 2.2) or the linear diboraphosphine H3B·PPh2BH2·PPh2H. A likely polymer-growth pathway of reversible chain transfer step-growth is suggested for H3B·PPhH2. Using secondary phosphine-boranes as model substrates a combined synthesis, structural (X-ray crystallography), labelling and computational approach reveals: initial bond activation pathways (B-H activation precedes P-H activation); key intermediates (phosphido-boranes, α-B-agostic base-stabilized boryls); and a catalytic route to the primary diboraphosphine (H3B·PPhHBH2·PPhH2). It is also shown that by changing the substituent at phosphorus (Ph or Cy versust Bu) different final products result (phosphido-borane or base stabilized phosphino-borane respectively). These studies provide detailed insight into the pathways that are operating during dehydropolymerization.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa