Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Pathog ; 18(3): e1010371, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35275978

RESUMO

Innate immunity constitutes the first line of defense against viruses, in which mitochondria play an important role in the induction of the interferon (IFN) response. BHRF1, a multifunctional viral protein expressed during Epstein-Barr virus reactivation, modulates mitochondrial dynamics and disrupts the IFN signaling pathway. Mitochondria are mobile organelles that move through the cytoplasm thanks to the cytoskeleton and in particular the microtubule (MT) network. MTs undergo various post-translational modifications, among them tubulin acetylation. In this study, we demonstrated that BHRF1 induces MT hyperacetylation to escape innate immunity. Indeed, the expression of BHRF1 induces the clustering of shortened mitochondria next to the nucleus. This "mito-aggresome" is organized around the centrosome and its formation is MT-dependent. We also observed that the α-tubulin acetyltransferase ATAT1 interacts with BHRF1. Using ATAT1 knockdown or a non-acetylatable α-tubulin mutant, we demonstrated that this hyperacetylation is necessary for the mito-aggresome formation. Similar results were observed during EBV reactivation. We investigated the mechanism leading to the clustering of mitochondria, and we identified dyneins as motors that are required for mitochondrial clustering. Finally, we demonstrated that BHRF1 needs MT hyperacetylation to block the induction of the IFN response. Moreover, the loss of MT hyperacetylation blocks the localization of autophagosomes close to the mito-aggresome, impeding BHRF1 to initiate mitophagy, which is essential to inhibiting the signaling pathway. Therefore, our results reveal the role of the MT network, and its acetylation level, in the induction of a pro-viral mitophagy.


Assuntos
Infecções por Vírus Epstein-Barr , Imunidade Inata , Proteínas Virais , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/fisiologia , Humanos , Microtúbulos/metabolismo , Mitofagia , Tubulina (Proteína)/metabolismo , Proteínas Virais/metabolismo
2.
J Infect Dis ; 226(5): 891-895, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35022749

RESUMO

Single-nucleotide polymorphism in APOBEC3C (resulting in a serine to isoleucine in position 188) is present in approximately 10% of African populations and greatly enhances restriction against human immunodeficiency virus-1 and simian immunodeficiency virus by improving dimerization and DNA processivity of the enzyme. In this study, we demonstrated in culture and in infected patients that hepatitis B virus (HBV) could be edited by APOBEC3CS188I. Using next-generation sequencing, we demonstrated that APOBEC3CS188I led to enhanced editing activity in 5'TpCpA→5'TpTpA context. This constitutes a new hallmark of this enzyme, which could be used to determine its impact on HBV or nuclear DNA.


Assuntos
Citidina Desaminase , Genoma Viral , Vírus da Hepatite B , Citidina Desaminase/genética , Hepatite B/genética , Vírus da Hepatite B/genética , Humanos , Polimorfismo de Nucleotídeo Único
3.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31826996

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of three human malignancies: Kaposi's sarcoma, primary effusion lymphoma, and the plasma cell variant of multicentric Castleman disease. Previous research has shown that several cellular tyrosine kinases play crucial roles during several steps in the virus replication cycle. Two KSHV proteins also have protein kinase function: open reading frame (ORF) 36 encodes a serine-threonine kinase, while ORF21 encodes a thymidine kinase (TK), which has recently been found to be an efficient tyrosine kinase. In this study, we explore the role of the ORF21 tyrosine kinase function in KSHV lytic replication. By generating a recombinant KSHV mutant with an enzymatically inactive ORF21 protein, we show that the tyrosine kinase function of ORF21/TK is not required for the progression of the lytic replication in tissue culture but that it is essential for the phosphorylation and activation to toxic moieties of the antiviral drugs zidovudine and brivudine. In addition, we identify several tyrosine kinase inhibitors, already in clinical use against human malignancies, which potently inhibit not only ORF21 TK kinase function but also viral lytic reactivation and the development of KSHV-infected endothelial tumors in mice. Since they target both cellular tyrosine kinases and a viral kinase, some of these compounds might find a use in the treatment of KSHV-associated malignancies.IMPORTANCE Our findings address the role of KSHV ORF21 as a tyrosine kinase during lytic replication and the activation of prodrugs in KSHV-infected cells. We also show the potential of selected clinically approved tyrosine kinase inhibitors to inhibit KSHV TK, KSHV lytic replication, infectious virion release, and the development of an endothelial tumor. Since they target both cellular tyrosine kinases supporting productive viral replication and a viral kinase, these drugs, which are already approved for clinical use, may be suitable for repurposing for the treatment of KSHV-related tumors in AIDS patients or transplant recipients.


Assuntos
Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/metabolismo , Fases de Leitura Aberta , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Latência Viral/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Células HEK293 , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Humanos , Camundongos , Mutação , Fases de Leitura Aberta/genética , Proteínas Tirosina Quinases/genética , Sarcoma de Kaposi/virologia , Células Vero , Latência Viral/fisiologia , Replicação Viral
4.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32878892

RESUMO

Yellow fever virus (YFV) is an RNA virus primarily targeting the liver. Severe YF cases are responsible for hemorrhagic fever, plausibly precipitated by excessive proinflammatory cytokine response. Pathogen recognition receptors (PRRs), such as the cytoplasmic retinoic acid inducible gene I (RIG-I)-like receptors (RLRs), and the viral RNA sensor protein kinase R (PKR), are known to initiate a proinflammatory response upon recognition of viral genomes. Here, we sought to reveal the main determinants responsible for the acute cytokine expression occurring in human hepatocytes following YFV infection. Using a RIG-I-defective human hepatoma cell line, we found that RIG-I largely contributes to cytokine secretion upon YFV infection. In infected RIG-I-proficient hepatoma cells, RIG-I was localized in stress granules. These granules are large aggregates of stalled translation preinitiation complexes known to concentrate RLRs and PKR and are so far recognized as hubs orchestrating RNA virus sensing. Stable knockdown of PKR in hepatoma cells revealed that PKR contributes to both stress granule formation and cytokine induction upon YFV infection. However, stress granule disruption did not affect the cytokine response to YFV infection, as assessed by small interfering RNA (siRNA)-knockdown-mediated inhibition of stress granule assembly. Finally, no viral RNA was detected in stress granules using a fluorescence in situ hybridization approach coupled with immunofluorescence. Our findings suggest that both RIG-I and PKR mediate proinflammatory cytokine induction in YFV-infected hepatocytes, in a stress granule-independent manner. Therefore, by showing the uncoupling of the cytokine response from the stress granule formation, our model challenges the current view in which stress granules are required for the mounting of the acute antiviral response.IMPORTANCE Yellow fever is a mosquito-borne acute hemorrhagic disease caused by yellow fever virus (YFV). The mechanisms responsible for its pathogenesis remain largely unknown, although increased inflammation has been linked to worsened outcome. YFV targets the liver, where it primarily infects hepatocytes. We found that two RNA-sensing proteins, RIG-I and PKR, participate in the induction of proinflammatory mediators in human hepatocytes infected with YFV. We show that YFV infection promotes the formation of cytoplasmic structures, termed stress granules, in a PKR- but not RIG-I-dependent manner. While stress granules were previously postulated to be essential platforms for immune activation, we found that they are not required for the production of proinflammatory mediators upon YFV infection. Collectively, our work uncovered molecular events triggered by the replication of YFV, which could prove instrumental in clarifying the pathogenesis of the disease, with possible repercussions for disease management.


Assuntos
Proteína DEAD-box 58/metabolismo , Vírus da Febre Amarela/metabolismo , eIF-2 Quinase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinoma Hepatocelular , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Proteína DEAD-box 58/deficiência , Proteína DEAD-box 58/genética , DNA Helicases/genética , Técnicas de Silenciamento de Genes , Haplorrinos , Hepatócitos/virologia , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Interferente Pequeno , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Receptores Imunológicos , Antígeno-1 Intracelular de Células T/genética , Transcriptoma , eIF-2 Quinase/genética
5.
RNA ; 24(10): 1285-1296, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30012569

RESUMO

Defective interfering (DI) genomes, or defective viral genomes (DVGs), are truncated viral genomes generated during replication of most viruses, including live viral vaccines. Among these, "panhandle" or copy-back (cb) and "hairpin" or snap-back (sb) DI genomes are generated during RNA virus replication. 5' cb/sb DI genomes are highly relevant for viral pathogenesis since they harbor immunostimulatory properties that increase virus recognition by the innate immune system of the host. We have developed DI-tector, a user-friendly and freely available program that identifies and characterizes cb/sb genomes from next-generation sequencing (NGS) data. DI-tector confirmed the presence of 5' cb genomes in cells infected with measles virus (MV). DI-tector also identified a novel 5' cb genome, as well as a variety of 3' cb/sb genomes whose existence had not previously been detected by conventional approaches in MV-infected cells. The presence of these novel cb/sb genomes was confirmed by RT-qPCR and RT-PCR, validating the ability of DI-tector to reveal the landscape of DI genome population in infected cell samples. Performance assessment using different experimental and simulated data sets revealed the robust specificity and sensitivity of DI-tector. We propose DI-tector as a universal tool for the unbiased detection of DI viral genomes, including 5' cb/sb DI genomes, in NGS data.


Assuntos
Vírus Defeituosos/genética , Genoma Viral , Genômica , Software , Linhagem Celular , Biologia Computacional/métodos , Genes de RNAr , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Viral , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Replicação Viral
6.
Bioinformatics ; 31(21): 3483-91, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26142185

RESUMO

MOTIVATION: Post-translational modification by the Small Ubiquitin-like Modifier (SUMO) proteins, a process termed SUMOylation, is involved in many fundamental cellular processes. SUMO proteins are conjugated to a protein substrate, creating an interface for the recruitment of cofactors harboring SUMO-interacting motifs (SIMs). Mapping both SUMO-conjugation sites and SIMs is required to study the functional consequence of SUMOylation. To define the best candidate sites for experimental validation we designed JASSA, a Joint Analyzer of SUMOylation site and SIMs. RESULTS: JASSA is a predictor that uses a scoring system based on a Position Frequency Matrix derived from the alignment of experimental SUMOylation sites or SIMs. Compared with existing web-tools, JASSA displays on par or better performances. Novel features were implemented towards a better evaluation of the prediction, including identification of database hits matching the query sequence and representation of candidate sites within the secondary structural elements and/or the 3D fold of the protein of interest, retrievable from deposited PDB files. AVAILABILITY AND IMPLEMENTATION: JASSA is freely accessible at http://www.jassa.fr/. Website is implemented in PHP and MySQL, with all major browsers supported. CONTACT: guillaume.beauclair@inserm.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Sequência de Proteína/métodos , Software , Sumoilação , Humanos , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
7.
Cell Commun Signal ; 12: 63, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25266361

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are increasingly considered to be used as biological immunosuppressants in hematopoietic stem cell transplantation (HSCT). In the early reconstitution phase following HSCT, natural killer (NK) cells represent the major lymphocyte population in peripheral blood and display graft-vs-leukemia (GvL) effects. The functional interactions between NK cells and MSCs have the potential to influence the leukemia relapse rate after HSCT. Until date, MSC-NK cell interaction studies are largely focussed on bone marrow derived (BM)-MSCs. Umbilical cord derived (UC)-MSCs might be an alternative source of therapeutic MSCs. Thus, we studied the interaction of UC-MSCs with unstimulated allogeneic NK cells. RESULTS: UC-MSCs could potently suppress NK cell cytotoxicity in overnight cultures via soluble factors. The main soluble immunosuppressant was identified as prostaglandin (PG)-E2. Maximal PGE2 release involved IL-1ß priming of MSCs after close contact between the NK cells and UC-MSCs. Interestingly, blocking gamma-secretase activation alleviated the immunosuppression by controlling PGE2 production. IL-1 receptor activation and subsequent downstream signalling events were found to require gamma-secretase activity. CONCLUSION: Although the role of PGE2 in NK cell-MSC has been reported, the requirement of cell-cell contact for PGE2 induced immunosuppression remained unexplained. Our findings shed light on this puzzling observation and identify new players in the NK cell-MSC crosstalk.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Dinoprostona/metabolismo , Células Matadoras Naturais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Comunicação Celular , Degranulação Celular , Células Cultivadas , Testes Imunológicos de Citotoxicidade , Humanos , Recém-Nascido , Interleucina-1/metabolismo , Células K562 , Células Matadoras Naturais/fisiologia , Células-Tronco Mesenquimais/fisiologia , Fenótipo , Receptores de Interleucina-1/metabolismo , Cordão Umbilical/citologia
8.
iScience ; 26(12): 108449, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38213785

RESUMO

Investigations of cellular responses to viral infection are commonly performed on mixed populations of infected and uninfected cells or using single-cell RNA sequencing, leading to inaccurate and low-resolution gene expression interpretations. Here, we performed deep polyA+ transcriptome analyses and novel RNA profiling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected lung epithelial cells, sorted based on the expression of the viral spike (S) protein. Infection caused a massive reduction in mRNAs and long non-coding RNAs (lncRNAs), including transcripts coding for antiviral factors, such as interferons (IFNs). This absence of IFN signaling probably explained the poor transcriptomic response of bystander cells co-cultured with S+ ones. NF-κB pathway and the inflammatory response escaped the global shutoff in S+ cells. Functional investigations revealed the proviral function of the NF-κB pathway and the antiviral activity of CYLD, a negative regulator of the pathway. Thus, our transcriptomic analysis on sorted cells revealed additional genes that modulate SARS-CoV-2 replication in lung cells.

9.
J Biol Chem ; 286(23): 21013-22, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21454548

RESUMO

HIV-1 integrase (IN) orchestrates the integration of the reverse transcribed viral cDNA into the host cell genome and participates also in other steps of HIV-1 replication. Cellular and viral factors assist IN in performing its multiple functions, and post-translational modifications contribute to modulate its activities. Here, we show that HIV-1 IN is modified by SUMO proteins and that phylogenetically conserved SUMOylation consensus motifs represent major SUMO acceptor sites. Viruses harboring SUMOylation site IN mutants displayed a replication defect that was mapped during the early stages of infection, before integration but after reverse transcription. Because SUMOylation-defective IN mutants retained WT catalytic activity, we hypothesize that SUMOylation might regulate the affinity of IN for co-factors, contributing to efficient HIV-1 replication.


Assuntos
Infecções por HIV/metabolismo , Integrase de HIV/metabolismo , HIV-1/fisiologia , Sumoilação/fisiologia , Integração Viral/fisiologia , Replicação Viral/fisiologia , Células HEK293 , Infecções por HIV/genética , Integrase de HIV/genética , Células HeLa , Humanos , Mutação , Transcrição Reversa/fisiologia
10.
Virologie (Montrouge) ; 16(2): 73-84, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881589

RESUMO

Integration into the genome of the host cell is an obligatory step in the replication of retroelements. This feature accounts for the fact that these elements are both potential mutagens as well as vectors suitable for long-term gene therapy. Recently, many studies have reported that proviral insertion is not random but, rather, targets specific regions in the genome. Additionally, it has become clear that this process is highly regulated at the molecular level. Both viral proteins and cellular factors participate in the integration step, explaining why different retroelements have distinct integration profiles. This review describes recent advances about the integration of retroelements, focusing particularly on the mechanisms involved in the selectivity and specificity of integration and the chromatin-anchoring step, which precedes the insertion of the provirus.

11.
J Mol Biol ; 434(6): 167277, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34599939

RESUMO

Establishment of the interferon (IFN)-mediated antiviral state provides a crucial initial line of defense against viral infection. Numerous genes that contribute to this antiviral state remain to be identified. Using a loss-of-function strategy, we screened an original library of 1156 siRNAs targeting 386 individual curated human genes in stimulated microglial cells infected with Zika virus (ZIKV), an emerging RNA virus that belongs to the flavivirus genus. The screen recovered twenty-one potential host proteins that modulate ZIKV replication in an IFN-dependent manner, including the previously known IFITM3 and LY6E. Further characterization contributed to delineate the spectrum of action of these genes towards other pathogenic RNA viruses, including Hepatitis C virus and SARS-CoV-2. Our data revealed that APOL3 acts as a proviral factor for ZIKV and several other related and unrelated RNA viruses. In addition, we showed that MTA2, a chromatin remodeling factor, possesses potent flavivirus-specific antiviral functions induced by IFN. Our work identified previously unrecognized genes that modulate the replication of RNA viruses in an IFN-dependent manner, opening new perspectives to target weakness points in the life cycle of these viruses.


Assuntos
Flavivirus , Interferons , Replicação Viral , Apolipoproteínas L/genética , Apolipoproteínas L/metabolismo , Flavivirus/fisiologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Interferons/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , SARS-CoV-2/fisiologia , Zika virus/fisiologia
12.
iScience ; 25(7): 104599, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789859

RESUMO

Pattern recognition receptors (PRRs) protect against microbial invasion by detecting specific molecular patterns found in pathogens and initiating an immune response. Although microbial-derived PRR ligands have been extensively characterized, the contribution and relevance of endogenous ligands to PRR activation remains overlooked. Here, we characterize the landscape of endogenous ligands that engage RIG-I-like receptors (RLRs) upon infection by different RNA viruses. In each infection, several RNAs transcribed by RNA polymerase III (Pol3) specifically engaged RLRs, particularly the family of Y RNAs. Sensing of Y RNAs was dependent on their mimicking of viral secondary structure and their 5'-triphosphate extremity. Further, we found that HIV-1 triggered a VPR-dependent downregulation of RNA triphosphatase DUSP11 in vitro and in vivo, inducing a transcriptome-wide change of cellular RNA 5'-triphosphorylation that licenses Y RNA immunogenicity. Overall, our work uncovers the contribution of endogenous RNAs to antiviral immunity and demonstrates the importance of this pathway in HIV-1 infection.

13.
NPJ Vaccines ; 6(1): 64, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903598

RESUMO

Mass vaccination with the live attenuated vaccine YF-17D is the current way to prevent infection with Yellow fever virus (YFV). However, 0.000012-0.00002% of vaccinated patients develop post-vaccination neurological syndrome (YEL-AND). Understanding the factors responsible for neuroinvasion, neurotropism, and neurovirulence of the vaccine is critical for improving its biosafety. The YF-FNV vaccine strain, known to be associated with a higher frequency of YEL-AND (0.3-0.4%) than YF-17D, is an excellent model to study vaccine neuroinvasiveness. We determined that neuroinvasiveness of YF-FNV occured both via infection and passage through human brain endothelial cells. Plaque purification and next generation sequencing (NGS) identified several neuroinvasive variants. Their neuroinvasiveness was not higher than that of YF-FNV. However, rebuilding the YF-FNV population diversity from a set of isolated YF-FNV-N variants restored the original neuroinvasive phenotype of YF-FNV. Therefore, we conclude that viral population diversity is a critical factor for YFV vaccine neuroinvasiveness.

14.
mBio ; 12(6): e0255721, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34809467

RESUMO

Viruses have evolved a plethora of mechanisms to impair host innate immune responses. Herpes simplex virus type 1 (HSV-1), a double-stranded linear DNA virus, impairs the mitochondrial network and dynamics predominantly through the UL12.5 gene. We demonstrated that HSV-1 infection induced a remodeling of mitochondrial shape, resulting in a fragmentation of the mitochondria associated with a decrease in their volume and an increase in their sphericity. This damage leads to the release of mitochondrial DNA (mtDNA) to the cytosol. By generating a stable THP-1 cell line expressing the DNase I-mCherry fusion protein and a THP-1 cell line specifically depleted of mtDNA upon ethidium bromide treatment, we showed that cytosolic mtDNA contributes to type I interferon and APOBEC3A upregulation. This was confirmed by using an HSV-1 strain (KOS37 UL98-SPA) with a deletion of the UL12.5 gene that impaired its ability to induce mtDNA stress. Furthermore, by using an inhibitor of RNA polymerase III, we demonstrated that upon HSV-1 infection, cytosolic mtDNA enhanced type I interferon induction through the RNA polymerase III/RIG-I pathway. APOBEC3A was in turn induced by interferon. Deep sequencing analyses of cytosolic mtDNA mutations revealed an APOBEC3A signature predominantly in the 5'TpCpG context. These data demonstrate that upon HSV-1 infection, the mitochondrial network is disrupted, leading to the release of mtDNA and ultimately to its catabolism through APOBEC3-induced mutations. IMPORTANCE Herpes simplex virus 1 (HSV-1) impairs the mitochondrial network through the viral protein UL12.5. This leads to the fusion of mitochondria and simultaneous release of mitochondrial DNA (mtDNA) in a mouse model. We have shown that released mtDNA is recognized as a danger signal, capable of stimulating signaling pathways and inducing the production of proinflammatory cytokines. The expression of the human cytidine deaminase APOBEC3A is highly upregulated by interferon responses. This enzyme catalyzes the deamination of cytidine to uridine in single-stranded DNA substrates, resulting in the catabolism of edited DNA. Using human cell lines deprived of mtDNA and viral strains deficient in UL12, we demonstrated the implication of mtDNA in the production of interferon and APOBEC3A expression during viral infection. We have shown that HSV-1 induces mitochondrial network fragmentation in a human model and confirmed the implication of RNA polymerase III/RIG-I signaling in the capture of cytosolic mtDNA.


Assuntos
Proteína DEAD-box 58/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Interferon beta/metabolismo , Mitocôndrias/virologia , RNA Polimerase III/metabolismo , Receptores Imunológicos/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Proteína DEAD-box 58/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Humanos , Interferon beta/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA Polimerase III/genética , Receptores Imunológicos/genética , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Virologie (Montrouge) ; 14(5): 349-361, 2010 Oct 01.
Artigo em Francês | MEDLINE | ID: mdl-36151696

RESUMO

Post-translational modifications, such as SUMOylation, are exam- ples of cellular machineries hijacked by viruses to efficiently replicate. SUMOylation, which consists in the conjugation of small ubiquitin-like modi- fier (SUMO) peptides to a substrate, is exploited or hampered by numerous viruses during infection. Several viral proteins are SUMOylated, causing modulation of sub-cellular localization, stability or modifications of protein activities. In this review, recently described viral examples have been chosen to highlight the different strategies used by viruses to hijack SUMOylation in order to promote replication. The link between pathologies due to viral infec- tions and SUMOylation is discussed. Finally, the potential applications of SUMOylation inhibitors in the treatment of viral infections and associated cancer are evoked.

16.
Viruses ; 11(1)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650657

RESUMO

Flaviviruses, such as dengue (DENV), West Nile (WNV), yellow fever (YFV) and Zika (ZIKV) viruses, are mosquito-borne pathogens that present a major risk to global public health. To identify host factors that promote flavivirus replication, we performed a genome-wide gain-of-function cDNA screen for human genes that enhance the replication of flavivirus reporter particles in human cells. The screen recovered seventeen potential host proteins that promote viral replication, including the previously known dolichyl-diphosphooligosaccharide--protein glycosyltransferase non-catalytic subunit (DDOST). Using silencing approaches, we validated the role of four candidates in YFV and WNV replication: ribosomal protein L19 (RPL19), ribosomal protein S3 (RPS3), DDOST and importin 9 (IPO9). Applying a panel of virological, biochemical and microscopic methods, we validated further the role of RPL19 and DDOST as host factors required for optimal replication of YFV, WNV and ZIKV. The genome-wide gain-of-function screen is thus a valid approach to advance our understanding of flavivirus replication.


Assuntos
Flavivirus/genética , Interações Hospedeiro-Patógeno/genética , Replicação Viral , Animais , Linhagem Celular , Culicidae/virologia , Vírus da Dengue/genética , Flavivirus/fisiologia , Biblioteca Gênica , Hexosiltransferases/genética , Humanos , Carioferinas/genética , Proteínas de Membrana/genética , Proteínas Ribossômicas/genética , Vírus do Nilo Ocidental/genética , Zika virus/genética
17.
PLoS Negl Trop Dis ; 13(8): e0007299, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31412040

RESUMO

BACKGROUND: To be transmitted to vertebrate hosts via the saliva of their vectors, arthropod-borne viruses have to cross several barriers in the mosquito body, including the midgut infection and escape barriers. Yellow fever virus (YFV) belongs to the genus Flavivirus, which includes human viruses transmitted by Aedes mosquitoes, such as dengue and Zika viruses. The live-attenuated YFV-17D vaccine has been used safely and efficiently on a large scale since the end of World War II. Early studies have shown, using viral titration from salivary glands of infected mosquitoes, that YFV-17D can infect Aedes aegypti midgut, but does not disseminate to other tissues. METHODOLOGY/PRINCIPAL FINDINGS: Here, we re-visited this issue using a panel of techniques, such as RT-qPCR, Western blot, immunofluorescence and titration assays. We showed that YFV-17D replication was not efficient in Aedes aegypti midgut, as compared to the clinical isolate YFV-Dakar. Viruses that replicated in the midgut failed to disseminate to secondary organs. When injected into the thorax of mosquitoes, viruses succeeded in replicating into midgut-associated tissues, suggesting that, during natural infection, the block for YFV-17D replication occurs at the basal membrane of the midgut. CONCLUSIONS/SIGNIFICANCE: The two barriers associated with Ae. aegypti midgut prevent YFV-17D replication. Our study contributes to our basic understanding of vector-pathogen interactions and may also aid in the development of non-transmissible live virus vaccines.


Assuntos
Aedes/virologia , Trato Gastrointestinal/virologia , Replicação Viral/efeitos dos fármacos , Vacina contra Febre Amarela/farmacologia , Vírus da Febre Amarela/efeitos dos fármacos , Vírus da Febre Amarela/crescimento & desenvolvimento , Animais , Linhagem Celular , Trato Gastrointestinal/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Mosquitos Vetores , Glândulas Salivares , Vacinas Atenuadas , Carga Viral , Vírus da Febre Amarela/genética
18.
Sci Signal ; 12(601)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575732

RESUMO

The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) RIG-I, MDA5, and LGP2 stimulate inflammatory and antiviral responses by sensing nonself RNA molecules produced during viral replication. Here, we investigated how LGP2 regulates the RIG-I- and MDA5-dependent induction of type I interferon (IFN) signaling and showed that LGP2 interacted with different components of the RNA-silencing machinery. We identified a direct protein-protein interaction between LGP2 and the IFN-inducible, double-stranded RNA binding protein PACT. The LGP2-PACT interaction was mediated by the regulatory C-terminal domain of LGP2 and was necessary for inhibiting RIG-I-dependent responses and for amplifying MDA5-dependent responses. We described a point mutation within LGP2 that disrupted the LGP2-PACT interaction and led to the loss of LGP2-mediated regulation of RIG-I and MDA5 signaling. These results suggest a model in which the LGP2-PACT interaction regulates the inflammatory responses mediated by RIG-I and MDA5 and enables the cellular RNA-silencing machinery to coordinate with the innate immune response.


Assuntos
Antivirais/metabolismo , Proteína DEAD-box 58/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Chlorocebus aethiops , Proteína DEAD-box 58/genética , Enterovirus Humano B/genética , Enterovirus Humano B/fisiologia , Células HEK293 , Células HeLa , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Mengovirus/genética , Mengovirus/fisiologia , Ligação Proteica , RNA Helicases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Receptores Imunológicos , Transdução de Sinais/genética , Células Vero
19.
J Mol Med (Berl) ; 97(3): 311-324, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30610257

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), a tumor of endothelial origin predominantly affecting immunosuppressed individuals. Up to date, vaccines and targeted therapies are not available. Screening and identification of anti-viral compounds are compromised by the lack of scalable cell culture systems reflecting properties of virus-transformed cells in patients. Further, the strict specificity of the virus for humans limits the development of in vivo models. In this study, we exploited a conditionally immortalized human endothelial cell line for establishment of in vitro 2D and 3D KSHV latency models and the generation of KS-like xenograft tumors in mice. Importantly, the invasive properties and tumor formation could be completely reverted by purging KSHV from the cells, confirming that tumor formation is dependent on the continued presence of KSHV, rather than being a consequence of irreversible transformation of the infected cells. Upon testing a library of 260 natural metabolites, we selected the compounds that induced viral loss or reduced the invasiveness of infected cells in 2D and 3D endothelial cell culture systems. The efficacy of selected compounds against KSHV-induced tumor formation was verified in the xenograft model. Together, this study shows that the combined use of anti-viral and anti-tumor assays based on the same cell line is predictive for tumor reduction in vivo and therefore allows faithful selection of novel drug candidates against Kaposi's sarcoma. KEY MESSAGES: Novel 2D, 3D, and xenograft mouse models mimic the consequences of KSHV infection. KSHV-induced tumorigenesis can be reverted upon purging the cells from the virus. A 3D invasiveness assay is predictive for tumor reduction in vivo. Chondramid B, epothilone B, and pretubulysin D diminish KS-like lesions in vivo.


Assuntos
Antivirais/farmacologia , Células Endoteliais/virologia , Herpesvirus Humano 8/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Camundongos Knockout , Sarcoma de Kaposi/tratamento farmacológico
20.
Cell Rep ; 24(2): 320-328, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996094

RESUMO

The flavivirus genus comprises major human pathogens, such as Dengue (DENV) and Zika (ZIKV) viruses. RIG-I and MDA5 are key cytoplasmic pathogen recognition receptors that are implicated in detecting viral RNAs. Here, we show that RNAs that co-purified with RIG-I during DENV infection are immuno-stimulatory, whereas RNAs bound to MDA5 are not. An affinity purification method combined with next-generation sequencing (NGS) revealed that the 5' region of the DENV genome is recognized by RIG-I. No DENV RNA was bound to MDA5. In vitro production of fragments of the DENV genome confirmed the NGS data and revealed that the 5' end of the genome, when bearing 5'-triphosphates, is the RIG-I ligand. The 5' region of the ZIKV genome is also a RIG-I agonist. We propose that RIG-I binds to the highly structured and conserved 5' region of flavivirus nascent transcripts before capping and that this mechanism leads to interferon secretion by infected cells.


Assuntos
Proteína DEAD-box 58/metabolismo , Vírus da Dengue/genética , Genoma Viral , Zika virus/genética , Células Dendríticas/imunologia , Células Dendríticas/virologia , Dengue/virologia , Células HEK293 , Humanos , Receptores Imunológicos , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa