Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Immunol ; 21(10): 1181-1193, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32807943

RESUMO

Type 2 cytokine responses promote parasitic immunity and initiate tissue repair; however, they can also result in immunopathologies when not properly restricted. Although basophilia is recognized as a common feature of type 2 inflammation, the roles basophils play in regulating these responses are unknown. Here, we demonstrate that helminth-induced group 2 innate lymphoid cell (ILC2) responses are exaggerated in the absence of basophils, resulting in increased inflammation and diminished lung function. Additionally, we show that ILC2s from basophil-depleted mice express reduced amounts of the receptor for the neuropeptide neuromedin B (NMB). Critically, NMB stimulation inhibited ILC2 responses from control but not basophil-depleted mice, and basophils were sufficient to directly enhance NMB receptor expression on ILC2s. These studies suggest that basophils prime ILC2s to respond to neuron-derived signals necessary to maintain tissue integrity. Further, these data provide mechanistic insight into the functions of basophils and identify NMB as a potent inhibitor of type 2 inflammation.


Assuntos
Basófilos/imunologia , Pulmão/metabolismo , Linfócitos/imunologia , Nippostrongylus/fisiologia , Infecções por Strongylida/imunologia , Animais , Comunicação Celular , Células Cultivadas , Citocinas/metabolismo , Imunidade Inata , Pulmão/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurocinina B/análogos & derivados , Neurocinina B/metabolismo , Células Th2/imunologia , Triptases/genética
2.
Nat Immunol ; 15(6): 546-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24747678

RESUMO

Natural killer (NK) cells are innate lymphocytes that exhibit many features of adaptive immunity, including clonal proliferation and long-lived memory. Here we demonstrate that the BTB-ZF transcription factor Zbtb32 (also known as ROG, FAZF, TZFP and PLZP) was essential for the proliferative burst and protective capacity of virus-specific NK cells. Signals from proinflammatory cytokines were both necessary and sufficient to induce high expression of Zbtb32 in NK cells. Zbtb32 facilitated NK cell proliferation during infection by antagonizing the anti-proliferative factor Blimp-1 (Prdm1). Our data support a model in which Zbtb32 acts as a cellular 'hub' through which proinflammatory signals instruct a 'proliferation-permissive' state in NK cells, thereby allowing their prolific expansion in response to viral infection.


Assuntos
Infecções por Herpesviridae/imunologia , Células Matadoras Naturais/imunologia , Proteínas Repressoras/imunologia , Imunidade Adaptativa , Animais , Proliferação de Células , Sobrevivência Celular/imunologia , Citocinas/imunologia , Memória Imunológica , Inflamação/imunologia , Inflamação/virologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteínas Repressoras/genética , Fatores de Transcrição/antagonistas & inibidores
3.
Proc Natl Acad Sci U S A ; 119(35): e2123267119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994660

RESUMO

The pregnant uterus is an immunologically rich organ, with dynamic changes in the inflammatory milieu and immune cell function underlying key stages of pregnancy. Recent studies have implicated dysregulated expression of the interleukin-1 (IL-1) family cytokine, IL-33, and its receptor, ST2, in poor pregnancy outcomes in women, including recurrent pregnancy loss, preeclampsia, and preterm labor. How IL-33 supports pregnancy progression in vivo is not well understood. Here, we demonstrate that maternal IL-33 signaling critically regulates uterine tissue remodeling and immune cell function during early pregnancy in mice. IL-33-deficient dams exhibit defects in implantation chamber formation and decidualization, and abnormal vascular remodeling during early pregnancy. These defects coincide with delays in early embryogenesis, increased resorptions, and impaired fetal and placental growth by late pregnancy. At a cellular level, myometrial fibroblasts, and decidual endothelial and stromal cells, are the main IL-33+ cell types in the uterus during decidualization and early placentation, whereas ST2 is expressed by uterine immune populations associated with type 2 immune responses, including ILC2s, Tregs, CD4+ T cells, M2- and cDC2-like myeloid cells, and mast cells. Early pregnancy defects in IL-33-deficient dams are associated with impaired type 2 cytokine responses by uterine lymphocytes and fewer Arginase-1+ macrophages in the uterine microenvironment. Collectively, our data highlight a regulatory network, involving crosstalk between IL-33-producing nonimmune cells and ST2+ immune cells at the maternal-fetal interface, that critically supports pregnancy progression in mice. This work has the potential to advance our understanding of how IL-33 signaling may support optimal pregnancy outcomes in women.


Assuntos
Interleucina-33 , Placenta , Placentação , Útero , Animais , Decídua/irrigação sanguínea , Decídua/citologia , Decídua/crescimento & desenvolvimento , Decídua/imunologia , Feminino , Feto/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/deficiência , Interleucina-33/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Placenta/imunologia , Placenta/metabolismo , Gravidez , Útero/irrigação sanguínea , Útero/crescimento & desenvolvimento , Útero/imunologia , Útero/metabolismo
4.
Immunol Rev ; 300(1): 125-133, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33491231

RESUMO

Natural killer (NK) cells are cytotoxic innate lymphocytes with key roles in host protection against viruses and malignancy. Notwithstanding their historical classification as innate immune cells, NK cells are now understood to have some capacity to mount memory or memory-like immune responses in which effector cells undergo antigen-driven expansion and give rise to long-lived memory cells with enhanced functionality. Understanding how antigen-specific effector and memory NK responses are regulated is an important and active area of research in the field. Here, we discuss key transcription factors and epigenetic processes involved in antigen-specific effector and memory NK cell differentiation.


Assuntos
Epigênese Genética , Memória Imunológica , Antígenos , Células Matadoras Naturais , Ativação Linfocitária
5.
Hum Reprod ; 39(5): 1023-1041, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511208

RESUMO

STUDY QUESTION: How does ovarian stimulation (OS), which is used to mature multiple oocytes for ART procedures, impact the principal cellular compartments and transcriptome of the human endometrium in the periovulatory and mid-secretory phases? SUMMARY ANSWER: During the mid-secretory window of implantation, OS alters the abundance of endometrial immune cells, whereas during the periovulatory period, OS substantially changes the endometrial transcriptome and impacts both endometrial glandular and immune cells. WHAT IS KNOWN ALREADY: Pregnancies conceived in an OS cycle are at risk of complications reflective of abnormal placentation and placental function. OS can alter endometrial gene expression and immune cell populations. How OS impacts the glandular, stromal, immune, and vascular compartments of the endometrium, in the periovulatory period as compared to the window of implantation, is unknown. STUDY DESIGN, SIZE, DURATION: This prospective cohort study carried out between 2020 and 2022 included 25 subjects undergoing OS and 25 subjects in natural menstrual cycles. Endometrial biopsies were performed in the proliferative, periovulatory, and mid-secretory phases. PARTICIPANTS/MATERIALS, SETTING, METHODS: Blood samples were processed to determine serum estradiol and progesterone levels. Both the endometrial transcriptome and the principal cellular compartments of the endometrium, including glands, stroma, immune, and vasculature, were evaluated by examining endometrial dating, differential gene expression, protein expression, cell populations, and the three-dimensional structure in endometrial tissue. Mann-Whitney U tests, unpaired t-tests or one-way ANOVA and pairwise multiple comparison tests were used to statistically evaluate differences. MAIN RESULTS AND THE ROLE OF CHANCE: In the periovulatory period, OS induced high levels of differential gene expression, glandular-stromal dyssynchrony, and an increase in both glandular epithelial volume and the frequency of endometrial monocytes/macrophages. In the window of implantation during the mid-secretory phase, OS induced changes in endometrial immune cells, with a greater frequency of B cells and a lower frequency of CD4 effector T cells. LARGE SCALE DATA: The data underlying this article have been uploaded to the Genome Expression Omnibus/National Center for Biotechnology Information with accession number GSE220044. LIMITATIONS, REASONS FOR CAUTION: A limited number of subjects were included in this study, although the subjects within each group, natural cycle or OS, were homogenous in their clinical characteristics. The number of subjects utilized was sufficient to identify significant differences; however, with a larger number of subjects and additional power, we may detect additional differences. Another limitation of the study is that proliferative phase biopsies were collected in natural cycles, but not in OS cycles. Given that the OS cycle subjects did not have known endometrial factor infertility, and the comparisons involved subjects who had a similar and robust response to stimulation, the findings are generalizable to women with a normal response to OS. WIDER IMPLICATIONS OF THE FINDINGS: OS substantially altered the periovulatory phase endometrium, with fewer transcriptomic and cell type-specific changes in the mid-secretory phase. Our findings show that after OS, the endometrial microenvironment in the window of implantation possesses many more similarities to that of a natural cycle than does the periovulatory endometrium. Further investigation of the immune compartment and the functional significance of this cellular compartment under OS conditions is warranted. STUDY FUNDING/COMPETING INTERESTS: Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases (R01AI148695 to A.M.B. and N.C.D.), Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD109152 to R.A.), and the March of Dimes (5-FY20-209 to R.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or March of Dimes. All authors declare no conflict of interest.


Assuntos
Endométrio , Indução da Ovulação , Transcriptoma , Humanos , Feminino , Endométrio/metabolismo , Adulto , Microambiente Celular , Estudos Prospectivos , Estradiol/sangue , Implantação do Embrião/fisiologia , Progesterona/sangue , Progesterona/metabolismo , Gravidez , Ciclo Menstrual
6.
PLoS Pathog ; 16(5): e1008579, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32421753

RESUMO

Anti-helminth responses require robust type 2 cytokine production that simultaneously promotes worm expulsion and initiates the resolution of helminth-induced wounds and hemorrhaging. However, how infection-induced changes in hematopoiesis contribute to these seemingly distinct processes remains unknown. Recent studies have suggested the existence of a hematopoietic progenitor with dual mast cell-erythrocyte potential. Nonetheless, whether and how these progenitors contribute to host protection during an active infection remains to be defined. Here, we employed single cell RNA-sequencing and identified that the metabolic enzyme, carbonic anhydrase (Car) 1 marks a predefined bone marrow-resident hematopoietic progenitor cell (HPC) population. Next, we generated a Car1-reporter mouse model and found that Car1-GFP positive progenitors represent bipotent mast cell/erythrocyte precursors. Finally, we show that Car1-expressing HPCs simultaneously support mast cell and erythrocyte responses during Trichinella spiralis infection. Collectively, these data suggest that mast cell/erythrocyte precursors are mobilized to promote type 2 cytokine responses and alleviate helminth-induced blood loss, developmentally linking these processes. Collectively, these studies reveal unappreciated hematopoietic events initiated by the host to combat helminth parasites and provide insight into the evolutionary pressure that may have shaped the developmental relationship between mast cells and erythrocytes.


Assuntos
Células Precursoras Eritroides/imunologia , Eritropoese/imunologia , Mastócitos/imunologia , Mastocitose/imunologia , Trichinella spiralis/imunologia , Triquinelose/imunologia , Animais , Anidrase Carbônica I/genética , Anidrase Carbônica I/imunologia , Células Precursoras Eritroides/parasitologia , Células Precursoras Eritroides/patologia , Feminino , Mastócitos/parasitologia , Mastócitos/patologia , Mastocitose/genética , Mastocitose/patologia , Camundongos , Camundongos Transgênicos , Triquinelose/genética , Triquinelose/patologia
7.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899448

RESUMO

Maternal spiral arteries and newly formed decidual capillaries support embryonic development prior to placentation. Previous studies demonstrated that Notch signaling is active in endothelial cells of both decidual capillaries and spiral arteries, however the role of Notch signaling in physiologic decidual angiogenesis and maintenance of the decidual vasculature in early mouse pregnancy has not yet been fully elucidated. We used the Cdh5-CreERT2;Jagged1(Jag1)flox/flox (Jag1∆EC) mouse model to delete Notch ligand, Jag1, in maternal endothelial cells during post-implantation, pre-placentation mouse pregnancy. Loss of endothelial Jag1 leads to increased expression of Notch effectors, Hey2 and Nrarp, and increased endothelial Notch signaling activity in areas of the decidua with remodeling angiogenesis. This correlated with an increase in Dll4 expression in capillary endothelial cells, but not spiral artery endothelial cells. Consistent with increased Dll4/Notch signaling, we observed decreased VEGFR2 expression and endothelial cell proliferation in angiogenic decidual capillaries. Despite aberrant Dll4 expression and Notch activation in Jag1∆EC mutants, pregnancies were maintained and the decidual vasculature was not altered up to embryonic day 7.5. Thus, Jag1 functions in the newly formed decidual capillaries as an antagonist of endothelial Dll4/Notch signaling during angiogenesis, but Jag1 signaling is not necessary for early uterine angiogenesis.


Assuntos
Proteína Jagged-1/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , Decídua/metabolismo , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário , Endométrio/metabolismo , Células Endoteliais/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Jagged-1/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese , Placentação , Gravidez , Receptores Notch/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Immunology ; 156(2): 111-119, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30450565

RESUMO

Natural killer (NK) cells are highly specialized cytotoxic lymphocytes that provide protection against pathogens and malignant cells. They develop from common lymphoid progenitors via a multi-stage lineage commitment and differentiation process that gives rise to mature NK cells with potent cytotoxic functionality. Although generally considered cells of the innate immune system, recent studies have demonstrated that NK cells have the capacity to mount immune responses with features of adaptive immunity, including robust antigen-specific clonal-like expansion and the generation of long-lived memory cells that mediate enhanced recall responses. Here, we discuss specific transcription factors that have been shown to commonly and uniquely regulate NK cell development and effector and memory responses in experimental mouse models.


Assuntos
Imunidade Celular , Imunidade Inata , Memória Imunológica , Células Matadoras Naturais/imunologia , Modelos Imunológicos , Transcrição Gênica/imunologia , Animais , Humanos , Camundongos
9.
Immunol Rev ; 253(1): 40-52, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23550637

RESUMO

The important role of microRNAs in directing immune responses has become increasingly clear. Here, we highlight discoveries uncovering the role of specific microRNAs in regulating the development and function of natural killer (NK) cells. Furthermore, we discuss the impact of NK cells on the entire immune system during global and specific microRNA ablation in the settings of inflammation, infection, and immune dysregulation.


Assuntos
Doenças do Sistema Imunitário/imunologia , Células Matadoras Naturais/imunologia , MicroRNAs/imunologia , Neoplasias/imunologia , Animais , Diferenciação Celular/genética , Citotoxicidade Imunológica/genética , Homeostase , Humanos , Doenças do Sistema Imunitário/genética , Imunomodulação , MicroRNAs/genética , Neoplasias/genética , Interferência de RNA/imunologia
10.
Proc Natl Acad Sci U S A ; 110(17): 6967-72, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23572582

RESUMO

Natural killer (NK) cells function in the recognition and destruction of host cells infected with pathogens. Many regulatory mechanisms govern the potent responses of NK cells, both at the cellular and molecular level. Ablation of microRNA (miRNA) processing enzymes demonstrated that miRNAs play critical roles in NK cell differentiation and function; however, the role of individual miRNAs requires further investigation. Using mice containing a targeted deletion of microRNA-155 (miR-155), we observed defects in NK cell maintenance and maturation at steady state, as well as in homeostatic proliferation in lymphopenic mice. In addition, we discovered that miR-155 is up-regulated in activated NK cells during mouse cytomegalovirus (MCMV) infection in response to signals from the proinflammatory cytokines IL-12 and IL-18 and through signal transducer and activator of transcription 4 (STAT4) signaling. Although miR-155 was found to be dispensable for cytotoxicity and cytokine production when triggered through activating receptors, NK cells lacking miR-155 exhibited severely impaired effector and memory cell numbers in both lymphoid and nonlymphoid tissues after MCMV infection. We demonstrate that miR-155 differentially targets Noxa and suppressor of cytokine signaling 1 (SOCS1) in NK cells at distinct stages of homeostasis and activation. NK cells constitutively expressing Noxa and SOCS1 exhibit profound defects in expansion during the response to MCMV infection, suggesting that their regulation by miR-155 promotes antiviral immunity.


Assuntos
Regulação da Expressão Gênica/imunologia , Infecções por Herpesviridae/imunologia , Homeostase/imunologia , Células Matadoras Naturais/imunologia , MicroRNAs/metabolismo , Muromegalovirus/imunologia , Transferência Adotiva , Animais , Imunoprecipitação da Cromatina , Deleção de Genes , Interleucina-12/metabolismo , Interleucina-18/metabolismo , Luciferases , Camundongos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT4/metabolismo , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/metabolismo
11.
Adv Exp Med Biol ; 850: 81-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26324348

RESUMO

Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells have traditionally been classified as a component of the innate immune system, they have recently been shown in mice and humans to exhibit certain features of immunological memory, including an ability to undergo a clonal-like expansion during virus infection, generate long-lived progeny (i.e. memory cells), and mediate recall responses against previously encountered pathogens--all characteristics previously ascribed only to adaptive immune responses by B and T cells in mammals. To date, the molecular events that govern the generation of NK cell memory are not completely understood. Using a mouse model of cytomegalovirus infection, we demonstrate that individual pro-inflammatory IL-12, IL-18, and type I-IFN signaling pathways are indispensible and play non-redundant roles in the generation of virus-specific NK cell memory. Furthermore, we discovered that antigen-specific proliferation and protection by NK cells is mediated by the transcription factor Zbtb32, which is induced by pro-inflammatory cytokines and promotes a cell cycle program in activated NK cells. A greater understanding of the molecular mechanisms controlling NK cell responses will provide novel strategies for tailoring vaccines to target infectious disease.


Assuntos
Imunidade Adaptativa , Infecções por Herpesviridae/imunologia , Memória Imunológica/genética , Células Matadoras Naturais/imunologia , Transdução de Sinais/imunologia , Animais , Proliferação de Células , Regulação da Expressão Gênica , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-18/genética , Interleucina-18/imunologia , Células Matadoras Naturais/patologia , Células Matadoras Naturais/virologia , Camundongos , Muromegalovirus/imunologia , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia
12.
J Immunol ; 187(6): 2841-7, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21900183

RESUMO

Successful immunity depends upon the activity of multiple cell types. Commitment of pluripotent precursor cells to specific lineages, such as T or B cells, is obviously fundamental to this process. However, it is also becoming clear that continued differentiation and specialization of lymphoid cells is equally important for immune system integrity. Several members of the BTB-ZF family have emerged as critical factors that control development of specific lineages and also of specific effector subsets within these lineages. For example, BTB-ZF genes have been shown to control T cell versus B cell commitment and CD4 versus CD8 lineage commitment. Others, such as PLZF for NKT cells and Bcl-6 for T follicular helper cells, are necessary for the acquisition of effector functions. In this review, we summarize current findings concerning the BTB-ZF family members with a reported role in the immune system.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/imunologia , Linfócitos/citologia , Linfócitos/imunologia , Fatores de Transcrição/imunologia , Dedos de Zinco/imunologia , Animais , Humanos
13.
Bioorg Med Chem Lett ; 21(12): 3708-11, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21565499

RESUMO

High throughput screening (HTS) of our compound file provided an attractive lead compound with modest P2X(7) receptor antagonist potency and high selectivity against a panel of receptors and channels, but also with high human plasma protein binding and a predicted short half-life in humans. Multi-parameter optimization was used to address the potency, physicochemical and pharmacokinetic properties which led to potent P2X(7)R antagonists with good disposition properties. Compound 33 (CE-224,535) was advanced to clinical studies for the treatment of rheumatoid arthritis.


Assuntos
Benzamidas , Descoberta de Drogas , Antagonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2X7/metabolismo , Uracila/análogos & derivados , Administração Oral , Animais , Antirreumáticos/síntese química , Antirreumáticos/química , Antirreumáticos/farmacocinética , Antirreumáticos/farmacologia , Benzamidas/síntese química , Benzamidas/química , Benzamidas/farmacocinética , Benzamidas/farmacologia , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2/síntese química , Antagonistas do Receptor Purinérgico P2/química , Antagonistas do Receptor Purinérgico P2/farmacocinética , Antagonistas do Receptor Purinérgico P2/farmacologia , Ratos , Relação Estrutura-Atividade , Uracila/síntese química , Uracila/química , Uracila/farmacocinética , Uracila/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-32269968

RESUMO

NK cells are cytotoxic lymphocytes that provide systemic defense against pathogens and malignancy. Although historically considered cells of the innate immune system, NK cells are now known to be capable of memory or memory-like immune responses in certain settings. Memory NK responses were initially reported over a decade ago in studies involving mouse models of cytomegalovirus infection and delayed-type hypersensitivity reactions to chemical haptens and viral antigens. Since then, a growing body of literature suggests that memory or memory-like NK cell responses may occur in a broader range of immunological settings, including in response to various viral and bacterial infections, and some immunization protocols. Memory-like NK cell responses have also now been reported in humans and non-human primates. Here, we summarize recent studies demonstrating memory or memory-like responses by NK cells in settings of infection and immunization against infectious agents.


Assuntos
Memória Imunológica , Células Matadoras Naturais , Animais , Antígenos Virais , Modelos Animais de Doenças , Primatas
15.
Front Immunol ; 11: 1355, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733452

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2020.00309.].

16.
Front Immunol ; 11: 309, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161593

RESUMO

Natural killer (NK) cells are cytotoxic innate lymphocytes that are well-known for their ability to kill infected or malignant cells. Beyond their roles in tumor surveillance and anti-pathogen defense, more recent studies have highlighted key roles for NK cells in a broad range of biological processes, including metabolic homeostasis, immunomodulation of T cells, contact hypersensitivity, and pregnancy. Consistent with the breadth and diversity of these functions, it is now appreciated that NK cells are a heterogeneous population, comprised of specialized and sometimes tissue-specific subsets with distinct phenotypes and effector functions. Indeed, in addition to the conventional NK cells (cNKs) that are abundant and have been well-studied in the blood and spleen, distinct subsets of tissue-resident NK cells (trNKs) and "helper" Group 1 innate lymphoid cells (ILC1s) have now been described in multiple organs and tissues, including the liver, uterus, thymus, adipose tissue, and skin, among others. The cNK, trNK, and/or helper ILC1 populations that co-exist in these various tissues exhibit both common and distinct developmental requirements, suggesting that a combination of lineage-, subset-, and tissue-specific differentiation processes may contribute to the unique functional properties of these various populations. Here, we provide an overview of the transcriptional regulatory pathways known to instruct the development and differentiation of cNK, trNK, and helper ILC1 populations in specific tissues in mice.


Assuntos
Células Matadoras Naturais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Medula Óssea/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Linfócitos/metabolismo , Camundongos , Linfócitos T Auxiliares-Indutores/metabolismo
17.
J Histochem Cytochem ; 68(4): 253-267, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32108542

RESUMO

Interleukin-33 (IL-33) is an IL-1 family cytokine with pleiotropic effects on diverse cell types. Dysregulated IL-33 signaling has been implicated in pregnancy-related disorders, including preeclampsia and recurrent pregnancy loss, and in ovarian function in women undergoing controlled ovarian stimulation for in vitro fertilization. To date, expression of IL-33 and its receptor subunit, ST2, in the female reproductive tract remains poorly characterized. We identify IL-33-expressing oocytes surrounded by ST2-expressing granulosa cells at all stages of follicular development, in addition to IL-33+ and ST2+ non-endothelial cells in the ovarian stroma and theca layer in ovaries from adult mice. These expression patterns are similar in estrus- and diestrus-stage adults and in pubescent mice, suggesting a role for IL-33 signaling in ovarian function throughout development and in the estrous cycle. In the uterus, we find expression of IL-33 and ST2 in glandular and luminal epithelia during estrus and at the initiation of pregnancy. Uterine IL-33 expression was modulated by the estrous cycle and was reduced in pubescent females. Last, superovulation increases transcripts for IL-33 and the soluble form of ST2 (sST2) in ovaries, and for IL-33 in uteri. Collectively, our findings lay the foundation for studies identifying cell type-specific requirements for IL-33/ST2 signaling in the establishment and maintenance of mouse pregnancy.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Ovário/metabolismo , Superovulação , Útero/metabolismo , Animais , Feminino , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovário/citologia , Gravidez , Útero/citologia
18.
J Leukoc Biol ; 104(6): 1087-1096, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30156708

RESUMO

NK cells are important mediators of immunological defense against pathogens and cancer, owing in part to their ability to directly kill infected and malignant host cells. Although historically considered cells of the innate immune system, a growing body of literature indicates that NK cells have the capacity to mount immune responses with features of immunological memory, including enhanced recall responses that are long-lived and Ag-specific. Anamnestic NK cell responses in mice have now been described in a broad range of immunological settings, including viral and bacterial infections, hapten-induced contact hypersensitivity (CHS) reactions, and alloantigen responses. Memory-like NK cell populations have also been identified in humans, most notably in the context of human cytomegalovirus (HCMV) infection. Here, an overview of these studies is provided with discussion of the molecular, transcriptional, and epigenetic pathways that regulate adaptive NK cell responses.


Assuntos
Memória Imunológica , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos/imunologia , Imunidade Adaptativa , Animais , Perfilação da Expressão Gênica , Humanos , Hipersensibilidade/imunologia , Infecções/imunologia , Isoantígenos/imunologia , Células Matadoras Naturais/transplante , Ativação Linfocitária , Linfopenia/genética , Linfopenia/imunologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Neoplasias/imunologia , Primatas/imunologia
19.
Methods Mol Biol ; 1441: 1-12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27177652

RESUMO

In C57BL/6 mice, NK cells expressing the activating receptor Ly49H proliferate robustly in response to mouse cytomegalovirus (MCMV) infection. The expansion of Ly49H(+) NK cells peaks at approximately 1 week post-infection, and is then followed by a distinct contraction phase that ultimately leaves a small but long-lived pool of MCMV-experienced Ly49H(+) NK cells that are capable of mediating enhanced memory-like responses during subsequent encounters with MCMV. Here we describe an adoptive transfer model in which the expansion, contraction, and memory cell persistence of transferred Ly49H(+) NK cells are tracked in congenic C57BL/6 hosts following MCMV infection.


Assuntos
Rastreamento de Células/métodos , Infecções por Citomegalovirus/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/transplante , Transferência Adotiva , Animais , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Infecções por Citomegalovirus/metabolismo , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Muromegalovirus/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo
20.
J Exp Med ; 210(13): 2981-90, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24277151

RESUMO

Development of the natural killer (NK) cell lineage is dependent on the transcription factor Nfil3 (or E4BP4), which is thought to act downstream of IL-15 signaling. Nfil3-deficient mice lack NK cells, whereas other lymphocyte lineages (B, T, and NKT cells) remain largely intact. We report the appearance of Ly49H-expressing NK cells in Nfil3(-/-) mice infected with mouse cytomegalovirus (MCMV) or recombinant viruses expressing the viral m157 glycoprotein. Nfil3(-/-) NK cells at the peak of antigen-driven expansion were functionally similar to NK cells from infected wild-type mice with respect to IFN-γ production and cytotoxicity, and could comparably produce long-lived memory NK cells that persisted in lymphoid and nonlymphoid tissues for >60 d. We demonstrate that generation and maintenance of NK cell memory is an Nfil3-independent but IL-15-dependent process. Furthermore, specific ablation of Nfil3 in either immature NK cells in the bone marrow or mature peripheral NK cells had no observable effect on NK cell lineage maintenance or homeostasis. Thus, expression of Nfil3 is crucial only early in the development of NK cells, and signals through activating receptors and proinflammatory cytokines during viral infection can bypass the requirement for Nfil3, promoting the proliferation and long-term survival of virus-specific NK cells.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Células Matadoras Naturais/citologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem da Célula , Separação Celular , Sobrevivência Celular , Citocinas/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica , Homeostase , Inflamação , Interferon gama/metabolismo , Interleucina-15/metabolismo , Células Matadoras Naturais/virologia , Ligantes , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Muromegalovirus/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Baço/citologia , Tamoxifeno/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa