Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 31(8): 908-915, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978732

RESUMO

Type-2 diabetes mellitus (T2DM) is an expanding global health problem, involving defective insulin secretion by pancreatic ß-cells and peripheral insulin resistance, leading to impaired glucose regulation. Galectin-1-an endogenous lectin with affinity for N-acetyllactosamine (LacNAc)-containing glycans-has emerged as a regulator of inflammatory and metabolic disorders. However, the role of galectin-1 in glucose homeostasis and pancreatic ß-cell function, independently of hypercaloric diets, has not been explored. Here, we identified a phenotype compatible with T2DM, involving alterations in glucose metabolism and pancreatic insulin release, in female but not male mice lacking galectin-1 (Lgals1-/-). Compared with age-matched controls, Lgals1-/- female mice exhibited higher body weight and increased food intake ad libitum as well as after fasting and acute re-feeding. Although fasted serum insulin levels and insulin sensitivity were similar in both genotypes, Lgals1-/- female mice presented altered glucose tolerance and higher basal glucose levels depending on the fasting period. Insulin response to glucose overload was impaired, while pancreatic insulin content was enhanced in the absence of galectin-1. Accordingly, recombinant galectin-1 enhanced glucose-stimulated insulin release in vitro. Our study identifies a role for galectin-1 in regulating glucose metabolism through modulation of pancreatic insulin secretion, highlighting novel opportunities to control T2DM.


Assuntos
Resistência à Insulina , Insulina , Animais , Feminino , Galectina 1/genética , Galectina 1/metabolismo , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos
2.
FASEB J ; 34(3): 3902-3914, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944423

RESUMO

To study the pathological effects of continuous hyperprolactinemia on food intake mechanisms we used female mice that lack dopamine D2 receptors in lactotropes (lacDrd2KO). These mice had lifelong hyperprolactinemia, increased food intake, and gradual development of obesity from 5 to 10 months of age. Ongoing endogenous prolactin signaling in lacDrd2KO mice was evidenced by increased basal phosphorylation of STAT5b in hypothalamic areas related to food intake, such as the arcuate (ARN), dorsomedial (DMN), and ventromedial nuclei. In the ARN of young lacDrd2KO mice there were higher Prlr mRNA levels and in obese 10-month-old lacDrd2KO mice increased expression of the orexigenic genes Neuropeptide Y (Npy) and Agouti-related peptide, compared to controls. Furthermore, Npy expression was increased in the DMN, probably contributing to increased food intake and decreased expression of Uncoupling protein-1 in brown adipose tissue, both events favoring weight gain. Leptin resistance in obese lacD2RKO mice was evidenced by its failure to lower food intake and a dampened response of STAT3 phosphorylation, specifically in the mediobasal hypothalamus. Our results suggest that pathological chronically high prolactin levels, as found in psychiatric treatments or patients with prolactinomas, may impact on specific hypothalamic nuclei altering gene expression, leptin response, and food intake.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Prolactina/farmacologia , Animais , Glicemia/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Insulina/sangue , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
3.
Cell Mol Neurobiol ; 39(2): 169-180, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30656469

RESUMO

A multistep signaling cascade originates in brain centers that regulate hypothalamic growth hormone-releasing hormone (Ghrh) and somatostatin expression levels and release to control the pattern of GH secretion. This process is sexually fine-tuned, and relays important information to the liver where GH receptors can be found. The temporal pattern of pituitary GH secretion, which is sex-specific in many species (episodic in males and more stable in females), represents a major component in establishing and maintaining the sexual dimorphism of hepatic gene transcription. The liver is sexually dimorphic exhibiting major differences in the profile of more than 1000 liver genes related to steroid, lipid, and foreign compound metabolism. Approximately, 90% of these sex-specific liver genes were shown to be primarily dependent on sexually dimorphic GH secretory patterns. This proposes an interesting scenario in which the central nervous system, indirectly setting GH profiles through GHRH and somatostatin control, regulates sexual dimorphism of liver activity in accordance with the need for sex-specific steroid metabolism and performance. We describe the influence of the loss of sexual dimorphism in liver gene expression due to altered brain function. Among other many factors, abnormal brain sexual differentiation, xenoestrogen exposure and D2R ablation from neurons dysregulate the GHRH-GH axis, and ultimately modify the liver capacity for adaptive mechanisms. We, therefore, propose that an inefficient brain control of the endocrine growth axis may underlie alterations in several metabolic processes through an indirect influence of sexual dimorphism of liver genes.


Assuntos
Encéfalo/fisiopatologia , Sistema Endócrino/fisiopatologia , Hepatopatias/fisiopatologia , Fígado/fisiopatologia , Caracteres Sexuais , Animais , Epigênese Genética , Feminino , Humanos , Hepatopatias/genética , Masculino
4.
Medicina (B Aires) ; 78(2): 91-98, 2018.
Artigo em Espanhol | MEDLINE | ID: mdl-29659358

RESUMO

In type 2 diabetes mellitus there is an overproduction of chylomicron in the postprandial state that is associated with increased cardiovascular risk. Current evidence points out a leading role of enterocyte in dyslipidemia of type 2 diabetes mellitus, since it increases the production of apolipoprotein B-48 in response to a raise in plasma free fatty acids and glucose. The chylomicron metabolism is regulated by many factors apart from ingested fat, including hormonal and metabolic elements. More recently, studies about the role of gut hormones, have demonstrated that glucagon-like peptide-1 decreases the production of apolipoprotein B-48 and glucagon-like peptide-2 enhances it. Insulin acutely inhibits intestinal chylomicron production in healthy humans, whereas this acute inhibitory effect on apolipoprotein B-48 production is blunted in type 2 diabetes mellitus. Understanding these emerging regulators of intestinal chylomicron secretion may offer new mechanisms of control for its metabolism and provide novel therapeutic strategies focalized in type 2 diabetes mellitus postprandial hyperlipidemia with the reduction of cardiovascular disease risk.


Assuntos
Quilomícrons/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/metabolismo , Enterócitos/metabolismo , Diabetes Mellitus Tipo 2/complicações , Dislipidemias/complicações , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Resistência à Insulina , Período Pós-Prandial , Triglicerídeos/metabolismo
5.
Am J Physiol Endocrinol Metab ; 311(6): E974-E988, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802964

RESUMO

We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage.


Assuntos
Adipócitos/metabolismo , Hepatócitos/metabolismo , Hiperprolactinemia/genética , Fígado/metabolismo , Obesidade/genética , Receptores de Dopamina D2/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Ensaio de Imunoadsorção Enzimática , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Expressão Gênica , Glucose/metabolismo , Teste de Tolerância a Glucose , Homeostase/genética , Hiperprolactinemia/metabolismo , Imuno-Histoquímica , Insulina/metabolismo , Lactotrofos/metabolismo , Lipogênese/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Obesidade/metabolismo , Radioimunoensaio , Reação em Cadeia da Polimerase em Tempo Real , Receptores da Prolactina/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
6.
Pharmacol Res ; 109: 74-80, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26748034

RESUMO

The importance of dopamine in central nervous system function is well known, but its effects on glucose homeostasis and pancreatic ß cell function are beginning to be unraveled. Mutant mice lacking dopamine type 2 receptors (D2R) are glucose intolerant and have abnormal insulin secretion. In humans, administration of neuroleptic drugs, which block dopamine receptors, may cause hyperinsulinemia, increased weight gain and glucose intolerance. Conversely, treatment with the dopamine precursor l-DOPA in patients with Parkinson's disease reduces insulin secretion upon oral glucose tolerance test, and bromocriptine improves glycemic control and glucose tolerance in obese type 2 diabetic patients as well as in non diabetic obese animals and humans. The actions of dopamine on glucose homeostasis and food intake impact both the autonomic nervous system and the endocrine system. Different central actions of the dopamine system may mediate its metabolic effects such as: (i) regulation of hypothalamic noradrenaline output, (ii) participation in appetite control, and (iii) maintenance of the biological clock in the suprachiasmatic nucleus. On the other hand, dopamine inhibits prolactin, which has metabolic functions; and, at the pancreatic beta cell dopamine D2 receptors inhibit insulin secretion. We review the evidence obtained in animal models and clinical studies that posited dopamine receptors as key elements in glucose homeostasis and ultimately led to the FDA approval of bromocriptine in adults with type 2 diabetes to improve glycemic control. Furthermore, we discuss the metabolic consequences of treatment with neuroleptics which target the D2R, that should be monitored in psychiatric patients to prevent the development in diabetes, weight gain, and hypertriglyceridemia.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Dopaminérgicos/uso terapêutico , Glucose/metabolismo , Acromegalia/tratamento farmacológico , Animais , Bromocriptina/uso terapêutico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dopaminérgicos/efeitos adversos , Homeostase , Humanos , Doença de Parkinson/tratamento farmacológico , Polimorfismo Genético , Prolactinoma/tratamento farmacológico , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
7.
Brain ; 138(Pt 10): 2948-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276013

RESUMO

Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum.


Assuntos
Encéfalo/metabolismo , Catecolaminas/metabolismo , Transtornos dos Movimentos/patologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Biopterinas/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Dopaminérgicos/uso terapêutico , Ingestão de Alimentos/genética , Feminino , Regulação da Expressão Gênica/genética , Técnicas de Introdução de Genes , Levodopa/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Transtornos dos Movimentos/tratamento farmacológico , Mutação/genética , Tiroxina/metabolismo
8.
J Neurosci ; 33(13): 5834-42, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23536095

RESUMO

Competition between adult males for limited resources such as food and receptive females is shaped by the male pattern of pituitary growth hormone (GH) secretion that determines body size and the production of urinary pheromones involved in male-to-male aggression. In the brain, dopamine (DA) provides incentive salience to stimuli that predict the availability of food and sexual partners. Although the importance of the GH axis and central DA neurotransmission in social dominance and fitness is clearly appreciated, the two systems have always been studied unconnectedly. Here we conducted a cell-specific genetic dissection study in conditional mutant mice that selectively lack DA D2 receptors (D2R) from pituitary lactotropes (lacDrd2KO) or neurons (neuroDrd2KO). Whereas lacDrd2KO mice developed a normal GH axis, neuroDrd2KO mice displayed fewer somatotropes; reduced hypothalamic Ghrh expression, pituitary GH content, and serum IGF-I levels; and exhibited reduced body size and weight. As a consequence of a GH axis deficit, neuroDrd2KO adult males excreted low levels of major urinary proteins and their urine failed to promote aggression and territorial behavior in control male challengers, in contrast to the urine taken from control adult males. These findings reveal that central D2Rs mediate a neuroendocrine-exocrine cascade that controls the maturation of the GH axis and downstream signals that are critical for fitness, social dominance, and competition between adult males.


Assuntos
Tamanho Corporal/fisiologia , Hormônio do Crescimento/metabolismo , Hipófise/metabolismo , Prolactina/metabolismo , Receptores de Dopamina D2/metabolismo , Análise de Variância , Animais , Benzamidas/farmacocinética , Tamanho Corporal/efeitos dos fármacos , Tamanho Corporal/genética , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Estudos de Casos e Controles , Catatonia/induzido quimicamente , Catatonia/metabolismo , Antagonistas de Dopamina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Feminino , Haloperidol/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas de Filamentos Intermediários/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Nestina , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Feromônios/urina , Hipófise/efeitos dos fármacos , Prolactina/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas/metabolismo , Radioimunoensaio , Receptores de Dopamina D2/deficiência , Receptores de Dopamina D2/genética , Predomínio Social , Territorialidade , Trítio/farmacocinética
9.
J Endocr Soc ; 8(3): bvae015, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38370444

RESUMO

Growth hormone (GH) modifies liver gene transcription in a sexually dimorphic manner to meet liver metabolic demands related to sex; thus, GH dysregulation leads to sex-biased hepatic disease. We dissected the steps of the GH regulatory cascade modifying GH-dependent genes involved in metabolism, focusing on the male-predominant genes Lcn13, Asns, and Cyp7b1, and the female-predominant genes Hao2, Pgc1a, Hamp2, Cyp2a4, and Cyp2b9. We explored mRNA expression in 2 settings: (i) intact liver GH receptor (GHR) but altered GH and insulin-like growth factor 1 (IGF1) levels (NeuroDrd2KO, HiGH, aHepIGF1kd, and STAT5bCA mouse lines); and (ii) liver loss of GHR, with or without STAT5b reconstitution (aHepGHRkd, and aHepGHRkd + STAT5bCA). Lcn13 was downregulated in males in most models, while Asns and Cyp7b1 were decreased in males by low GH levels or action, or constant GH levels, but unexpectedly upregulated in both sexes by the loss of liver Igf1 or constitutive Stat5b expression. Hao, Cyp2a4, and Cyp2b9 were generally decreased in female mice with low GH levels or action (NeuroDrd2KO and/or aHepGHRkd mice) and increased in HiGH females, while in contrast, Pgc1a was increased in female NeuroDrd2KO but decreased in STAT5bCA and aHepIGF1kd females. Bioinformatic analysis of RNAseq from aHepGHRkd livers stressed the greater impact of GHR loss on wide gene expression in males and highlighted that GH modifies almost completely different gene signatures in each sex. Concordantly, we show that altering different steps of the GH cascade in the liver modified liver expression of Lcn13, Asns, Cyp7b1, Hao2, Hamp2, Pgc1a, Cyp2a4, and Cyp2b9 in a sex- and gene-specific manner.

10.
Pituitary ; 16(3): 303-10, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22886682

RESUMO

The role of angiogenesis in human pituitary tumor progression is questioned. Our aim was to characterize the morphologic changes that occur in the vasculature of pituitary adenomas, in correlation with the expression of nestin, a protein found in endothelial cells of newly formed vessels of developing organs. We also evaluated the relation of angiogenic markers and nestin with Ki-67 index. Immunohistochemical studies were performed on paraffin embedded samples of 47 pituitary adenomas and six normal pituitaries. We determined microvessel density (number of CD31+ or CD34+ vessels per square millimetre), vascular area (cumulative area occupied by vessels), average vessel size, and further classified vessels as small (< 100 µm2) or large (> 100 µm2). We correlated the above parameters with nestin expression and Ki-67 index. Lower vascular area compared to normal tissue was found in adenomas (p < 0.05). Interestingly, pituitary adenomas had significantly more small vessels than control pituitaries (p < 0.04 for CD31 and CD34). In tumors many capillaries were positive for nestin, while scarce staining was detected in controls, so that nestin positive area was significantly higher in tumors. Furthermore, nestin area correlated positively with the % of small vessels. Ki-67 correlated neither with vascular area nor with nestin expression. In human pituitary tumors there was a predominance of small capillaries in correlation with increased expression of the progenitor marker nestin. We suggest that angiogenesis is an active process in these tumors, in spite of their low total vascular area when compared to normal pituitaries.


Assuntos
Adenoma/metabolismo , Nestina/metabolismo , Neoplasias Hipofisárias/metabolismo , Adulto , Idoso , Vasos Sanguíneos/metabolismo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Antígeno Ki-67/metabolismo , Pessoa de Meia-Idade , Neovascularização Patológica , Adulto Jovem
11.
Int J Pharm ; 634: 122662, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736675

RESUMO

Growth hormone deficiency has been treated by the daily administration of recombinant human growth hormone (hGH) for decades. Patient compliance to this treatment is generally incomplete due to challenges including dose frequency and lack of perceived benefits. This stimulates the research on new formulations to reduce the number of periodic administrations. In this study silica nanoparticles and silica-collagen nanocomposites were evaluated for hGH loading and release. Bare nanoparticles showed higher hGH adsorption capacity than thiol- and isobutyl-bearing particles of similar diameters. Monitoring of bound protein conformation changes indicated hGH structure retention when adsorbed on bare silica nanoparticles and suggested no alterations on protein activity. Protein-loaded particles incorporated into collagen matrices (silica-collagen nanocomposites) showed a progressive protein release profile different from the observed for hGH-loaded silica nanoparticles and hGH-loaded collagen matrices. While both the collagen and the silica nanoparticle systems reached a 100 % release after 4 and 7 days respectively, silica-collagen nanocomposites showed a bi-phasic prolonged hGH release reaching approximately an 80 % after 15 days. These findings suggest that biocompatible silica-collagen nanocomposites could be used as vehicles for the prolonged delivery of hGH which could lead to a potential reduction in the number of periodic administrations.


Assuntos
Hormônio do Crescimento Humano , Humanos , Hormônio do Crescimento Humano/química , Dióxido de Silício , Colágeno , Composição de Medicamentos , Proteínas Recombinantes , Hormônio do Crescimento
12.
J Neuroendocrinol ; : e13248, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36932836

RESUMO

Growth hormone (GH) is fundamental for growth and glucose homeostasis, and prolactin for optimal pregnancy and lactation outcome, but additionally, both hormones have multiple functions that include a strong impact on energetic metabolism. In this respect, prolactin and GH receptors have been found in brown, and white adipocytes, as well as in hypothalamic centers regulating thermogenesis. This review describes the neuroendocrine control of the function and plasticity of brown and beige adipocytes, with a special focus on prolactin and GH actions. Most evidence points to a negative association between high prolactin levels and the thermogenic capacity of BAT, except in early development. During lactation and pregnancy, prolactin may be a contributing factor that limits unneeded thermogenesis, downregulating BAT UCP1. Furthermore, animal models of high serum prolactin have low BAT UCP1 levels and whitening of the tissue, while lack of Prlr induces beiging in WAT depots. These actions may involve hypothalamic nuclei, particularly the DMN, POA and ARN, brain centers that participate in thermogenesis. Studies on GH regulation of BAT function present some controversies. Most mouse models with GH excess or deficiency point to an inhibitory role of GH on BAT function. Even so, a stimulatory role of GH on WAT beiging has also been described, in accordance with whole-genome microarrays that demonstrate divergent response signatures of BAT and WAT genes to the loss of GH signaling. Understanding the physiology of BAT and WAT beiging may contribute to the ongoing efforts to curtail obesity.

14.
Front Endocrinol (Lausanne) ; 13: 883092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757410

RESUMO

Background: The association of high serum prolactin and increased body weight is positive but controversial, therefore we hypothesized that additional factors such as diets and the impact of prolactin on brown adipose tissue may condition its metabolic effects. Methods: We used LacDrd2KO females with lifelong severe hyperprolactinemia due dopamine-D2 receptor deletion from lactotropes, and slow onset of metabolic disturbances, and compared them to their respective controls (Drd2 loxP/loxP ). Food intake, and binge eating was evaluated. We then challenged mice with a High Fat (HFD) or a Control Diet (CD) for 8 weeks, beginning at 3 months of age, when no differences in body weight are found between genotypes. At the end of the protocol brown and white adipose tissues were weighed, and thermogenic and lipogenic markers studied, using real time PCR (Ucp1, Cidea, Pgc1a, Lpl, adiponectin, Prlr) or immunohistochemistry (UCP1). Histochemical analysis of brown adipose tissue, and glucose tolerance tests were performed. Results: Hyperprolactinemic mice had increased food intake and binge eating behavior. Metabolic effects induced by a HFD were exacerbated in lacDrd2KO mice. Hyperprolactinemia aggravated HFD-induced body weight gain and glucose intolerance. In brown adipose tissue pronounced cellular whitening as well as decreased expression of the thermogenic markers Ucp1 and Pgc1a were observed in response to high prolactin levels, regardless of the diet, and furthermore, hyperprolactinemia potentiated the decrease in Cidea mRNA expression induced by HFD. In subcutaneous white adipose tissue hyperprolactinemia synergistically increased tissue weight, while decreasing Prlr, Adiponectin and Lpl mRNA levels regardless of the diet. Conclusions: Pathological hyperprolactinemia has a strong impact in brown adipose tissue, lowering thermogenic markers and evoking tissue whitening. Furthermore, it modifies lipogenic markers in subcutaneous white adipose, and aggravates HFD-induced glucose intolerance and Cidea decrease. Therefore, severe high prolactin levels may target BAT function, and furthermore represent an adjuvant player in the development of obesity induced by high fat diets.


Assuntos
Intolerância à Glucose , Hiperprolactinemia , Adiponectina/farmacologia , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Intolerância à Glucose/metabolismo , Hiperprolactinemia/metabolismo , Hiperprolactinemia/patologia , Camundongos , Obesidade/metabolismo , Prolactina/metabolismo , RNA Mensageiro/metabolismo , Aumento de Peso
15.
In Vitro Cell Dev Biol Anim ; 58(10): 936-956, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36484879

RESUMO

Benzophenones (BPs) are endocrine disruptors frequently used in sunscreens and food packaging as UV blockers. Our goal was to assess the effect of benzophenone 2 (BP2) and 3 (BP3) on gene expression related to autophagy process and ER stress response in pancreatic beta cells. To that end, the mouse pancreatic beta cell line MIN6B1 was treated with 10 µM BP2 or BP3 in the presence or absence of the autophagy-inhibitor chloroquine (CQ, 10 µM) or the autophagy-inducer rapamycin (RAPA, 50 nM) during 24 h. BP3 inhibited the expression of the autophagic gene Ulk1, and additional effects were uncovered when autophagy was modified by CQ and RAPA. BP3 counteracted CQ-induced Lamp2 expression but did not compensate CQ-induced Sqstm1/p62 gene transcription, neither BP2. Nevertheless, the BPs did not alter the autophagic flux. In relation to ER stress, BP3 inhibited unspliced and spliced Xbp1 mRNA levels in the presence or absence of CQ, totally counteracted CQ-induced Chop gene expression, and partially reverted CQ-induced Grp78/Bip mRNA levels, while BP2 also partially inhibited Grp78/Bip mRNA induction by CQ. In conclusion, BPs, principally BP3, affect cellular adaptive responses related to autophagy, lysosomal biogenesis, and ER stress in pancreatic beta cells, indicating that BP exposure could lead to beta cell dysfunction.


Assuntos
Benzofenonas , Chaperona BiP do Retículo Endoplasmático , Células Secretoras de Insulina , Animais , Camundongos , Autofagia/efeitos dos fármacos , Autofagia/genética , Benzofenonas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Expressão Gênica
16.
J Pharmacol Exp Ther ; 337(3): 766-74, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21406548

RESUMO

Prolactin-secreting adenomas are the most frequent type among pituitary tumors, and pharmacological therapy with dopamine agonists remains the mainstay of treatment. But some adenomas are resistant, and a decrease in the number or function of dopamine D2 receptors (D2Rs) has been described in these cases. D2R knockout [Drd2(-/-)] mice have chronic hyperprolactinemia and pituitary hyperplasia and provide an experimental model for dopamine agonist-resistant prolactinomas. We described previously that disruption of D2Rs increases vascular endothelial growth factor (VEGF) expression. We therefore designed two strategies of antiangiogenesis using prolactinomas generated in Drd2(-/-) female mice: direct intra-adenoma mVEGF R1 (Flt-1)/Fc chimera (VEGF-TRAP) injection for 3 weeks [into subcutaneously transplanted pituitaries from Drd2(-/-) mice] and systemic VEGF neutralization with the specific monoclonal antibody G6-31. Both strategies resulted in substantial decrease of prolactin content and lactotrope area, and a reduction in tumor size was observed in in situ prolactinomas. There were significant decreases in vascularity, evaluated by cluster of differentiation molecule 31 vessel staining, and proliferation (proliferating cell nuclear antigen staining) in response to both anti-VEGF treatments. These data demonstrate that the antiangiogenic approach was effective in inhibiting the growth of in situ dopamine-resistant prolactinomas as well as in the transplanted adenomas. No differences in VEGF protein expression were observed after either anti-VEGF treatment, and, although serum VEGF was increased in G6-31-treated mice, pituitary activation of the VEGF receptor 2 signaling pathway was reduced. Our results indicate that, even though the role of angiogenesis in pituitary adenomas is contentious, VEGF might contribute to adequate vascular supply and represent a supplementary therapeutic target in dopamine agonist-resistant prolactinomas.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias Hipofisárias/tratamento farmacológico , Prolactinoma/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Proliferação de Células/efeitos dos fármacos , Dopamina/metabolismo , Feminino , Hiperplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Hipófise/irrigação sanguínea , Hipófise/metabolismo , Hipófise/patologia , Neoplasias Hipofisárias/irrigação sanguínea , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Prolactina/sangue , Prolactinoma/irrigação sanguínea , Prolactinoma/metabolismo , Prolactinoma/patologia , Receptores de Dopamina D2/genética , Receptores de Fatores de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Neuroendocrinology ; 92(4): 207-14, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20975260

RESUMO

Dopamine D2 receptor (D2R) participation in prolactin regulation is well documented, but the role of D2Rs in the control of other hormones involved in growth, food intake and glucose metabolism has not been extensively studied. The study of D2R knockout mice (Drd2(-/-)) puts forward new insights into the role of the D2R in growth hormone (GH)-releasing hormone-GH regulation, peptides involved in food intake, glucose homeostasis, as well as in prolactinoma development. The expected phenotype of chronic hyperprolactinemia and prolactinoma development was found in the Drd2(-/-) mouse, and this model constitutes a valuable tool in the study of dopamine-resistant prolactinomas. Unexpectedly, these mice were growth retarded, and the importance of functional hypothalamic D2Rs in the neonatal period was revealed. In the Drd2(-/-) mouse there was a failure of high neonatal GH levels and therefore the expansion of pituitary somatotropes was permanently altered. These mice also had increased food intake, and a sexually dimorphic participation of the D2R in food intake regulation is suggested. The effect described is probably secondary to D2R regulation of prolactin secretion. Furthermore, the negative modulation of D2Rs on α-melanocyte-stimulating hormone release and positive action on the hypothalamic expression of orexins reveals the complex D2R regulation of food intake. Finally, pancreatic D2Rs inhibit glucose-stimulated insulin release. Lack of dopaminergic inhibition throughout development in the Drd2(-/-) mouse may exert a gradual deteriorating effect on insulin homeostasis, so that eventually glucose intolerance develops. These results highlight the complex endocrine actions of the D2Rs at different levels, hypothalamus, pituitary or pancreas, which function to improve fitness, reproductive success and survival.


Assuntos
Sistema Endócrino/fisiologia , Metabolismo/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/fisiologia , Animais , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Sistema Endócrino/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Camundongos , Camundongos Knockout , Prolactina/metabolismo , Receptores de Dopamina D2/metabolismo
18.
Front Horm Res ; 38: 59-69, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20616496

RESUMO

The role of dopaminergic receptors in the control of GH release remains controversial. The dopamine receptor 2 (D2R) knockout mouse represents a useful model to study the participation of the D2R on growth and GHRH-GH regulation. These knockout mice have hyperprolactinemia and lactotrope hyperplasia, but unexpectedly, they are also growth retarded. In D2R knockout mice there is a significant decrease in somatotrope population, which is paralleled by decreased GH content and output from pituitary cells. The sensitivity of GHRH-induced GH and cAMP release is similar between genotypes, even though the response amplitude is lower in knockouts. We point to an involvement of D2R signaling at the hypothalamic level as dopamine did not release GH acting at the pituitary level, and both somatostatin and GHRH mRNA expression are altered in knockout mice. The similarity of the pituitary defect in the D2R knockout mouse to that of GHRH deficient models suggests a probable mechanism. Loss of dopamine signaling via hypothalamic D2Rs at a critical age may cause inadequate GHRH secretion subsequently leading to inappropriate somatotrope lineage development. Furthermore, GH pulsatility, which depends on a regulated temporal balance between GHRH and somatostatin output might be compromised in D2R knockout mice, leading to lower IGF-I, and growth retardation.


Assuntos
Dopamina/fisiologia , Hormônio Liberador de Hormônio do Crescimento/fisiologia , Hormônio do Crescimento/fisiologia , Neurotransmissores/fisiologia , Acromegalia/tratamento farmacológico , Animais , Crescimento , Humanos , Camundongos , Receptores de Dopamina D2/fisiologia
19.
J Mol Endocrinol ; 64(3): 165-179, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31990658

RESUMO

Many sex differences in liver gene expression originate in the brain, depend on GH secretion and may underlie sex disparities in hepatic disease. Because epigenetic mechanisms may contribute, we studied promoter methylation and microRNA abundance in the liver, associated with expression of sexual dimorphic genes in mice with selective disruption of the dopamine D2 receptor in neurons (neuroDrd2KO), which decreases hypothalamic Ghrh, pituitary GH, and serum IGFI and in neonatally androgenized female mice which have increased pituitary GH content and serum IGFI. We evaluated mRNA levels of the female predominant genes prolactin receptor (Prlr), alcohol dehydrogenase 1 (Adh1), Cyp2a4, and hepatocyte nuclear transcription factor 6 (Hnf6) and the male predominant gene, Cyp7b1. Female predominant genes had higher mRNA levels compared to males, but lower methylation was only detected in the Prlr and Cyp2a4 female promoters. In neuroDrd2KO mice, sexual dimorphism was lost for all genes; the upregulation (feminization) of Prlr and Cyp2a4 in males correlated with decreased methylation of their promoters, and the downregulation (masculinization) of Hnf-6 mRNA in females correlated inversely with its promoter methylation. Neonatal androgenization of females evoked a loss of sexual dimorphism only for the female predominant Hnf6 and Adh1 genes, but no differences in promoter methylation were found. Finally, mmu-miR-155-5p, predicted to target Cyp7b1 expression, was lower in males in association with higher Cyp7b1 mRNA levels compared to females and was not modified in neuroDrd2KO or TP mice. Our results suggest specific regulation of gene sexually dimorphic expression in the liver by methylation or miRNAs.


Assuntos
Álcool Desidrogenase/genética , Hidrocarboneto de Aril Hidroxilases/genética , Família 2 do Citocromo P450/genética , Família 7 do Citocromo P450/genética , Hormônio do Crescimento/farmacologia , Fator 6 Nuclear de Hepatócito/genética , Receptores da Prolactina/genética , Esteroide Hidroxilases/genética , Álcool Desidrogenase/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Família 2 do Citocromo P450/metabolismo , Família 7 do Citocromo P450/metabolismo , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/metabolismo , Fator 6 Nuclear de Hepatócito/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Receptores da Prolactina/metabolismo , Caracteres Sexuais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esteroide Hidroxilases/metabolismo
20.
J Neuroendocrinol ; 32(11): e12888, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463813

RESUMO

Prolactin is named after its vital role of promoting milk production during lactation, although it has been implicated in multiple functions within the body, including metabolism and energy homeostasis. Prolactin has been hypothesised to play a key role in driving many of the adaptations of the maternal body to allow the mother to meet the physiological demands of both pregnancy and lactation, including the high energetic demands of the growing foetus followed by milk production to support the offspring after birth. Prolactin receptors are found in many tissues involved in metabolism and food intake, such as the pancreas, liver, hypothalamus, small intestine and adipose tissue. We review the literature examining the effects of prolactin in these various tissues and how they relate to changes in function in physiological states of high prolactin, such as pregnancy and lactation, and in pathological states of hyperprolactinaemia in the adult. In many cases, whether prolactin promotes healthy metabolism or leads to dysregulation of metabolic functions is highly dependent on the situation. Overall, although prolactin may not play a major role in regulating metabolism and body weight outside of pregnancy and lactation, it definitely has the ability to contribute to metabolic function.


Assuntos
Lactação/fisiologia , Metabolismo/fisiologia , Prolactina/fisiologia , Animais , Feminino , Humanos , Gravidez , Receptores da Prolactina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa