Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Chemistry ; 30(30): e202400952, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38536767

RESUMO

The first example of a [2]rotaxane shuttle capable of selective optical sensing of chloride anions over other halides is reported. The rotaxane was synthesised via a chloride ion template-directed cyclisation of an isophthalamide macrocycle around a multi-station axle containing peripheral naphthalene diimide (NDI) stations and a halogen bonding (XB) bis(iodotriazole) based station. Proton NMR studies indicate the macrocycle resides preferentially at the NDI stations in the free rotaxane, where it is stabilised by aromatic donor-acceptor charge transfer interactions between the axle NDI and macrocycle hydroquinone moieties. Addition of chloride ions in an aqueous-acetone solvent mixture induces macrocycle translocation to the XB anion binding station to facilitate the formation of convergent XB⋅⋅⋅Cl- and hydrogen bonding HB⋅⋅⋅Cl- interactions, which is accompanied by a reduction of the charge-transfer absorption band. Importantly, little to no optical response was induced by addition of bromide or iodide to the rotaxane, indicative of the size discriminative steric inaccessibility of the interlocked cavity to the larger halides, demonstrating the potential of using the mechanical bond effect as a potent strategy and tool in chloride-selective chemo-sensing applications in aqueous containing solvent environments.

2.
Chemistry ; 30(2): e202302775, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37792284

RESUMO

The anion recognition and electrochemical anion-sensing properties of halogen-bonding (XB) tripodal zinc(II) receptors strategically designed and constructed for tetrahedral anion guest binding are described. The XB tris(iodotriazole)-containing hosts exhibit high affinities and selectivities for inorganic phosphate over other more basic, mono-charged oxoanions such as acetate and the halides in a competitive CD3 CN/D2 O (9 : 1 v/v) aqueous solvent mixture. 1 H NMR anion binding and electrochemical voltammetric anion sensing studies with redox-active ferrocene functionalised metallo-tripodal receptor analogues, reveal each of the XB tripods as superior anion complexants when compared to their tris(prototriazole)-containing, hydrogen bonding (HB) counterparts, not only exemplifying the halogen bond as a strong alternative interaction to the traditional hydrogen bond for molecular recognition but also providing rare evidence of the ability of XB receptors to preferentially bind the "harder" phosphate oxoanion over the "softer" and less hydrated halides in aqueous containing media.

3.
Angew Chem Int Ed Engl ; 63(6): e202315959, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38063409

RESUMO

Anion sensing via either optical or electrochemical readouts has separately received enormous attention, however, a judicious combination of the advantages of both modalities remains unexplored. Toward this goal, we herein disclose a series of novel, redox-active, fluorescent, halogen bonding (XB) and hydrogen bonding (HB) BODIPY-based anion sensors, wherein the introduction of a ferrocene motif induces remarkable changes in the fluorescence response. Extensive fluorescence anion titration, lifetime and electrochemical studies reveal anion binding-induced emission modulation through intramolecular photoinduced electron transfer (PET), the magnitude of which is dependent on the nature of both the XB/HB donor and anion. Impressively, the XB sensor outperformed its HB congener in terms of anion binding strength and fluorescence switching magnitude, displaying significant fluorescence turn-OFF upon anion binding. In contrast, redox-inactive control receptors display a turn-ON response, highlighting the pronounced impact of the introduction of the redox-active ferrocene on the optical sensing performance. Additionally, the redox-active ferrocene motif also serves as an electrochemical reporter group, enabling voltammetric anion sensing in competitive solvents. The combined advantages of both sensing modalities were further exploited in a novel, proof-of-principle, fluorescence spectroelectrochemical anion sensing approach, enabling simultaneous and sensitive read out of optical and electrochemical responses in multiple oxidation states and at very low receptor concentration.

4.
J Am Chem Soc ; 145(50): 27367-27379, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38060428

RESUMO

Despite their hydrophobic surfaces with localized π-holes and rigid well-defined architectures providing a scaffold for preorganizing binding motifs, fullerenes remain unexplored as potential supramolecular host platforms for the recognition of anions. Herein, we present the first example of the rational design, synthesis, and unique recognition properties of novel fullerene-functionalized halogen-bonding (XB) heteroditopic ion-pair receptors containing cation and anion binding domains spatially separated by C60. Fullerene spatial separation of the XB donors and the crown ether complexed potassium cation resulted in a rare example of an artificial receptor containing two anion binding sites with opposing preferences for hard and soft halides. Importantly, the incorporation of the C60 motif into the heteroditopic receptor structure has a significant effect on the halide binding selectivity, which is further amplified upon K+ cation binding. The potassium cation complexed fullerene-based receptors exhibit enhanced selectivity for the soft polarizable iodide ion which is assisted by the C60 scaffold preorganizing the potent XB-based binding domains, anion-π interactions, and the exceptional polarizability of the fullerene moiety, as evidenced from DFT calculations. These observations serve to highlight the unique properties of fullerene surfaces for proximal charged guest binding with potential applications in construction of selective molecular sensors and modulating the properties of solar cell devices.

5.
Chemistry ; 29(52): e202301648, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37338223

RESUMO

Several examples of the cyaphide-azide 1,3-dipolar cycloaddition reaction to afford metallo-triazaphospholes are reported. The gold(I) triazaphospholes Au(IDipp)(CPN3 R) (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene; R=t Bu, Ad, Dipp), magnesium(II) triazaphospholes, {Mg(Dipp NacNac)(CPN3 R)}2 (Dipp NacNac=CH{C(CH3 )N(Dipp)}2 , Dipp=2,6-diisopropylphenyl; R=t Bu, Bn), and germanium(II) triazaphosphole Ge(Dipp NacNac)-(CPN3 t Bu) can be prepared straightforwardly, under mild conditions and in good yields, in a manner reminiscent of the classic alkyne-azide click reaction (albeit without a catalyst). This reactivity can be extended to compounds with two azide functional groups such as 1,3-diazidobenzene. It is shown that the resulting metallo-triazaphospholes can be used as precursors to carbon-functionalized species, including protio- and iodo-triazaphospholes.

6.
Chemistry ; 29(43): e202301316, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199337

RESUMO

A series of heteroditopic halogen bonding (XB) [2]rotaxanes were prepared via a combination of passive and active metal template-directed strategies. The ability of the [2]rotaxanes to bind alkali metal halide ion-pairs was investigated by extensive 1 H NMR titration studies, wherein detailed analysis of cation, anion and ion-pair affinity measurements indicate dramatic positive cooperative enhancements in halide anion association upon either Na+ or K+ pre-complexation. This study demonstrates that careful consideration of multiple, parallel and competing binding equilibria is essential when interpreting observed 1 H NMR spectral changes in ion-pair receptor systems, especially those which exhibit dynamic behaviour. Importantly, in comparison to XB [2]catenane analogues, these neutral XB heteroditopic [2]rotaxane host systems demonstrated that despite their relatively weaker cation and anion binding affinities, they exhibit a notably higher level of positive cooperativity for alkali metal halide ion-pair binding, highlighting the role of greater co-conformational adaptive behaviour in mechanically-bonded hosts for the purposes of charged species recognition.

7.
Chemistry ; 29(49): e202301446, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37300836

RESUMO

A series of squaramide-based heteroditopic [2]rotaxanes consisting of isophthalamide macrocycle and squaramide axle components are synthesized using an alkali metal cation template-directed stoppering methodology. This work highlights the unprecedented sodium cation template coordination of the Lewis basic squaramide carbonyls for interlocked structure synthesis. Extensive quantitative 1 H NMR spectroscopic anion and ion-pair recognition studies reveal the [2]rotaxane hosts are capable of cooperative sodium halide ion-pair mechanical bond axle-macrocycle component recognition, eliciting up to 20-fold enhancements in binding strengths for bromide and iodide, wherein the Lewis basic carbonyls and Lewis acidic NH hydrogen bond donors of the squaramide axle motif operate as cation and anion receptive sites simultaneously in an ambidentate fashion. Notably, varying the length and nature of the polyether cation binding unit of the macrocycle component dramatically influences the ion-pair binding affinities of the [2]rotaxanes, even overcoming direct contact NaCl ion-pair binding modes in polar organic solvents. Furthermore, the cooperative ion-pair binding properties of the squaramide-based heteroditopic [2]rotaxanes are exploited to successfully extract solid sodium halide salts into organic media.

8.
Chemistry ; 29(33): e202300608, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36929530

RESUMO

A series of dynamic metalloporphyrin [2]rotaxane molecular shuttles comprising of bis-functionalised Zn(II) porphyrin axle and pyridyl functionalised macrocycle components are prepared in high yield via active metal template synthetic methodology. Extensive variable temperature 1 H NMR and quantitative UV-Vis spectroscopic titration studies demonstrate dynamic macrocycle translocation is governed by an inter-component co-ordination interaction between the macrocycle pyridyl and axle Zn(II) metalloporphyrin, which serves to bias a 'resting state' co-conformation. The dynamic shuttling behaviour of the interlocked structures is dramatically inhibited by the addition of a neutral Lewis base such as pyridine, but can also be tuned via post-synthetic rotaxane demetallation of the porphyrin axle core to give free-base, or upon subsequent metallation, Ni(II) [2]rotaxane analogues. Importantly, the Lewis acidic Zn(II) porphyrin axle component is also capable of coordinating anions which induces mechanical bond shuttling behaviour resulting in a novel optical sensing response.


Assuntos
Metaloporfirinas , Porfirinas , Rotaxanos , Modelos Moleculares , Rotaxanos/química , Bases de Lewis , Ânions/química
9.
Angew Chem Int Ed Engl ; 62(38): e202309211, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37449867

RESUMO

We describe the use of the cyaphide-azide 1,3-dipolar cycloaddition reaction for the synthesis of a new class of inorganic rotaxanes containing gold(I) triazaphosphole stoppers. Electron-deficient bis-azides, which thread perethylated pillar[5]arene in aromatic solvents, readily react with two equivalents of Au(IDipp)(CP) (IDipp=1,3-bis-(2,6-diisopropylphenyl)-imidazol-2-ylidene) to afford interlocked molecules via an inorganic click reaction. These transformations proceed in good yields (ca. 65 %) and in the absence of a catalyst. The resulting organometallic rotaxanes are air- and moisture-stable and can be purified by column chromatography under aerobic conditions. The targeted rotaxanes were characterized by multi-element nuclear magnetic resonance (NMR) spectroscopy, mass-spectrometry, and single-crystal X-ray diffraction.

10.
Angew Chem Int Ed Engl ; 62(14): e202300867, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36749115

RESUMO

Mimicking Nature's polymeric protein architectures by designing hosts with binding cavities screened from bulk solvent is a promising approach to achieving anion recognition in competitive media. Accomplishing this, however, can be synthetically demanding. Herein we present a synthetically tractable approach, by directly incorporating potent supramolecular anion-receptive motifs into a polymeric scaffold, tuneable through a judicious selection of the co-monomer. A comprehensive analysis of anion recognition and sensing is demonstrated with redox-active, halogen bonding polymeric hosts. Notably, the polymeric hosts consistently outperform their monomeric analogues, with especially large halide binding enhancements of ca. 50-fold observed in aqueous-organic solvent mixtures. These binding enhancements are rationalised by the generation and presentation of low dielectric constant binding microenvironments from which there is appreciable solvent exclusion.

11.
Angew Chem Int Ed Engl ; 62(47): e202312745, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37772928

RESUMO

The first examples of [2]catenanes capable of selective anion transport across a lipid bilayer are reported. The neutral halogen bonding (XB) [2]catenanes were prepared via a chloride template-directed strategy in an unprecedented demonstration of using XB⋅⋅⋅anion interactions to direct catenane assembly from all-neutral components. Anion binding experiments in aqueous-organic solvent media revealed strong halide over oxoanion selectivity, and a marked enhancement in the chloride and bromide affinities of the catenanes relative to their constituent macrocycles. The catenanes additionally displayed an anti-Hofmeister binding preference for bromide over the larger iodide anion, illustrating the efficacy of employing sigma-hole interactions in conjunction with the mechanical bond effect to tune receptor selectivity. Transmembrane anion transport studies conducted in POPC LUVs revealed that the catenanes were more effective anion transporters than the constituent macrocycles, with high chloride over hydroxide selectivity, which is critical to potential therapeutic applications of anionophores. Remarkably these outperform existing acyclic halogen bonding anionophores with regards to this selectivity. Record chloride over nitrate anion transport selectivity was also observed. This represents a rare example of the direct translation of intrinsic anion binding affinities to anion transport behaviour, and demonstrates the key role of the catenane mechanical bond effect for enhanced anion transport selectivity.

12.
Angew Chem Int Ed Engl ; 62(5): e202214785, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36440816

RESUMO

The first examples of halogen bonding (XB) heteroditopic homo[2]catenanes were prepared by discrete Na+ template-directed assembly of oligo(ethylene glycol) units derived from XB donor-containing macrocycles and acyclic bis-azide precursors, followed by a CuI -mediated azide-alkyne cycloaddition macrocyclisation reaction. Extensive 1 H NMR spectroscopic studies show the [2]catenane hosts exhibit positive cooperative ion-pair recognition behaviour, wherein XB-mediated halide recognition is enhanced by alkali metal cation pre-complexation. Notably, subtle changes in the catenanes' oligo(ethylene glycol) chain length dramatically alters their ion-binding affinity, stoichiometry, complexation mode, and conformational dynamics. Solution-phase and single-crystal X-ray diffraction studies provide evidence for competing host-separated and direct-contact ion-pair binding modes. We further demonstrate the [2]catenanes are capable of extracting solid alkali-metal halide salts into organic media.

13.
J Am Chem Soc ; 144(19): 8827-8836, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35522996

RESUMO

Inspired by the success of its related sigma-hole congener halogen bonding (XB), chalcogen bonding (ChB) is emerging as a powerful noncovalent interaction with a plethora of applications in supramolecular chemistry and beyond. Despite its increasing importance, the judicious modulation of ChB donor strength remains a formidable challenge. Herein, we present, for the first time, the reversible and large-scale modulation of ChB potency by electrochemical redox control. This is exemplified by both the switching-ON of anion recognition via ChB oxidative activation of a novel bis(ferrocenyltellurotriazole) anion host and switching-OFF reductive ChB deactivation of anion binding potency with a telluroviologen receptor. The direct linking of the redox-active center and ChB receptor donor sites enables strong coupling, which is reflected by up to a remarkable 3 orders of magnitude modulation of anion binding strength. This is demonstrated through large voltammetric perturbations of the respective receptor ferrocene and viologen redox couples, enabling, for the first time, ChB-mediated electrochemical anion sensing. The sensors not only display significant anion-binding-induced electrochemical responses in competitive aqueous-organic solvent systems but can compete with, or even outperform similar, highly potent XB and HB sensors. These observations serve to highlight a unique (redox) tunability of ChB and pave the way for further exploration of the reversible (redox) modulation of ChB in a wide range of applications, including anion sensors as well as molecular switches and machines.


Assuntos
Calcogênios , Halogênios , Ânions/química , Halogênios/química , Oxirredução , Solventes
14.
J Am Chem Soc ; 144(32): 14778-14789, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35930460

RESUMO

Chalcogen bonding (ChB) is rapidly rising to prominence in supramolecular chemistry as a powerful sigma (σ)-hole-based noncovalent interaction, especially for applications in the field of molecular recognition. Recent studies have demonstrated ChB donor strength and potency to be remarkably sensitive to local electronic environments, including redox-switchable on/off anion binding and sensing capability. Influencing the unique electronic and geometric environment sensitivity of ChB interactions through simultaneous cobound metal cation recognition, herein, we present the first potassium chloride-selective heteroditopic ion-pair receptor. The direct conjugation of benzo-15-crown-5 ether (B15C5) appendages to Te centers in a bis-tellurotriazole framework facilitates alkali metal halide (MX) ion-pair binding through the formation of a cofacial intramolecular bis-B15C5 M+ (M+ = K+, Rb+, Cs+) sandwich complex and bidentate ChB···X- formation. Extensive quantitative 1H NMR ion-pair affinity titration experiments, solid-liquid and liquid-liquid extraction, and U-tube transport studies all demonstrate unprecedented KCl selectivity over all other group 1 metal chlorides. It is demonstrated that the origin of the receptor's ion-pair binding cooperativity and KCl selectivity arises from an electronic polarization of the ChB donors induced by the cobound alkali metal cation. Importantly, the magnitude of this switch on Te-centered electrophilicity, and therefore anion-binding affinity, is shown to correlate with the inherent Lewis acidity of the alkali metal cation. Extensive computational DFT investigations corroborated the experimental alkali metal cation-anion ion-pair binding observations for halides and oxoanions.


Assuntos
Calcogênios , Metais Alcalinos , Ânions/química , Cátions/química , Cloretos , Cloreto de Potássio
15.
Chemistry ; 28(67): e202201838, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35968660

RESUMO

The synthesis and characterisation of a library of acyclic antimony(III) and bismuth(III) triaryl pnictogen bonding (PnB) receptor systems are reported. In the first-generation receptor series, quantitative 1 H NMR chloride titration experiments in THF solvent media reveal halide anion binding potency is intimately correlated with both the electronic-withdrawing nature of the aryl- substituent and the polarisability of the PnB donor. Further extensive anion binding investigations with the most potent Sb- and Bi-based PnB receptors: 1⋅Sb2CF3 and 1⋅Bi2CF3 , reveal novel selectivity profiles, both displaying Cl- selectivity relative to the heavier halides and, impressively, to a range of highly basic oxoanions. The synthesis and preliminary chloride anion binding studies of a series of novel tripodal tris-proto-triazole triaryl Sb(III) and Bi(III) mixed PnB-HB receptor systems are also described. Whereas parent triphenyl Sb(III) and Bi(III) compounds are incapable of binding Cl- in THF solvent media, the PnB-triazole HB host systems exhibit notable halide affinity.


Assuntos
Antimônio , Bismuto , Antimônio/química , Bismuto/química , Cloretos , Ânions/química , Halogênios/química , Triazóis/química , Solventes
16.
Chemistry ; 28(48): e202201209, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35621330

RESUMO

A family of novel halogen bonding (XB) and hydrogen bonding (HB) heteroditopic [2]rotaxane host systems constructed by active metal template (AMT) methodology, were studied for their ability to cooperatively recognise lithium halide (LiX) ion-pairs. 1 H NMR ion-pair titration experiments in CD3 CN:CDCl3 solvent mixtures revealed a notable "switch-on" of halide anion binding in the presence of a co-bound lithium cation, with rotaxane hosts demonstrating selectivity for LiBr over LiI. The strength of halide binding was shown to greatly increase with increasing number of halogen bond donors integrated into the interlocked cavity, where an all-XB rotaxane was found to be the most potent host for LiBr. DFT calculations corroborated these findings, determining the mode of LiX ion-pair binding. Notably, ion-pair binding was not observed with the corresponding XB/HB macrocycles alone, highlighting the cooperative, heteroditopic, rotaxane axle-macrocycle component mechanical bond effect as an efficient strategy for ion-pair recognition in general.

17.
Chemistry ; 28(28): e202200389, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35293643

RESUMO

We report the synthesis of two [2]rotaxanes containing an interlocked three dimensional binding cavity formed from a pyridinium bis(amide) axle component containing two phenol donors, and an isophthalamide based macrocycle. In the competitive solvent mixture 1 : 1 CDCl3 : CD3 OD, one of the receptors exhibits a much higher selectivity preference for chloride than an analogous rotaxane without the hydroxy groups. X-ray crystal structures reveal the chloride anion guest encapsulated within the interlocked binding cavity, though not all of the hydrogen bond donors are utilised. Computational semi-empirical simulations indicate that secondary intermolecular interactions occur between the axle hydroxy hydrogen bond donors and the [2]rotaxane macrocycle components, contributing to a more preorganised binding pocket, which may be responsible for the observed enhanced selectivity.


Assuntos
Rotaxanos , Ânions/química , Cloretos/química , Halogênios , Ligação de Hidrogênio , Modelos Moleculares , Rotaxanos/química
18.
Chem Rev ; 120(3): 1888-1935, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31916758

RESUMO

Anions play a vital role in a broad range of environmental, technological, and physiological processes, making their detection/quantification valuable. Electroanalytical sensors offer much to the selective, sensitive, cheap, portable, and real-time analysis of anion presence where suitable combinations of selective (noncovalent) recognition and transduction can be integrated. Spurred on by significant developments in anion supramolecular chemistry, electrochemical anion sensing has received considerable attention in the past two decades. In this review, we provide a detailed overview of all electroanalytical techniques that have been used for this purpose, including voltammetric, impedimetric, capacititive, and potentiometric methods. We will confine our discussion to sensors that are based on synthetic anion receptors with a specific focus on reversible, noncovalent interactions, in particular, hydrogen- and halogen-bonding. Apart from their sensory properties, we will also discuss how electrochemical techniques can be used to study anion recognition processes (e.g., binding constant determination) and will furthermore provide a detailed outlook over future efforts and promising new avenues in this field.

19.
Angew Chem Int Ed Engl ; 61(50): e202214523, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36264711

RESUMO

Exceptionally strong halogen bonding (XB) donor-chloride interactions are exploited for the chloride anion template synthesis of neutral XB [2]rotaxane host systems which contain perfluoroaryl-functionalised axle components, including a remarkably potent novel 4,6-dinitro-1,3-bis-iodotriazole motif. Halide anion recognition properties in aqueous-organic media, determined via extensive 1 H NMR halide anion titration experiments, reveal the rotaxane host systems exhibit dramatically enhanced affinities for hydrophilic Cl- and Br- , but conversely diminished affinities for hydrophobic I- , relative to their non-interlocked axle counterparts. Crucially, this mechanical bond effect induces a binding selectivity which directly opposes Hofmeister bias. Free-energy analysis of this mechanical bond enhancement demonstrates anion recognition by neutral XB interlocked host systems as a rare and general strategy to engineer anti-Hofmeister bias anion selectivity in synthetic receptor design.

20.
J Am Chem Soc ; 143(45): 19199-19206, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730337

RESUMO

Continuous, real-time ion sensing is of great value across various environmental and medical scenarios but remains underdeveloped. Herein, we demonstrate the potential of redox capacitance spectroscopy as a sensitive and highly adaptable ion sensing methodology, exemplified by the continuous flow sensing of anions at redox-active halogen bonding ferrocenylisophthalamide self-assembled monolayers. Upon anion binding, the redox distribution of the electroactive interface, and its associated redox capacitance, are reversibly modulated, providing a simple and direct sensory readout. Importantly, the redox capacitance can be monitored at a freely chosen, constant electrode polarization, providing a facile means of tuning both the sensor analytical performance and the anion binding affinity, by up to 1 order of magnitude. In surpassing standard voltammetric methods in terms of analytical performance and adaptability, these findings pave the way for the development of highly sensitive and uniquely tunable ion sensors. More generally, this methodology also serves as a powerful and unprecedented means of simultaneously modulating and monitoring the thermodynamics and kinetics of host-guest interactions at redox-active interfaces.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa