Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2445: 99-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972988

RESUMO

Autophagy and autophagy-associated genes are implicated in a growing list of cellular, physiological, and pathophysiological processes and conditions. Therefore, it is ever more important to be able to reliably monitor and quantify autophagic activity. Whereas autophagic markers, such as LC3 can provide general indications about autophagy, specific and accurate detection of autophagic activity requires assessment of autophagic cargo flux. Here, we provide protocols on how to monitor bulk and selective autophagy by the use of inducible expression of exogenous probes based on the fluorescent coral protein Keima. To exemplify and demonstrate the power of this system, we provide data obtained by analyses of cytosolic and mitochondrially targeted Keima probes in human retinal epithelial cells treated with the mTOR-inhibitor Torin1 or with the iron chelator deferiprone (DFP). Our data indicate that Torin1 induces autophagic flux of cytosol and mitochondria to a similar degree, that is, compatible with induction of bulk autophagy, whereas DFP induces a highly selective form of mitophagy that efficiently excludes cytosol.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Autofagia/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitofagia
2.
Front Cell Dev Biol ; 7: 373, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039200

RESUMO

The eukaryotic cell has developed intricate machineries that monitor and maintain proteome homeostasis in order to ensure cellular functionality. This involves the carefully coordinated balance between protein synthesis and degradation pathways, which are dynamically regulated in order to meet the constantly changing demands of the cell. Ribosomes, together with the endoplasmic reticulum (ER), are the key drivers of protein synthesis, folding, maturation and sorting, while the proteasome plays a pivotal role in terminating the existence of thousands of proteins that are misfolded, damaged or otherwise obsolete. The synthesis, structure and function of these dedicated machines has been studied for decades, however, much less is understood about the mechanisms that control and execute their own turnover. Autophagy, an evolutionarily conserved catabolic pathway, mediates degradation of a large variety of cytosolic substrates, ranging from single proteins to entire organelles or multi-subunit macromolecular complexes. In this review, we focus on selective autophagy of three key components of the protein homeostasis machinery: ribosomes, ER and proteasomes, through the selective autophagy pathways of ribophagy, ER-phagy, and proteaphagy. We discuss newly discovered mechanisms for the selective clearance of these substrates, which are often stress-dependent and involve specialized signals for cargo recognition by a growing number of receptors. We further discuss the interplay between these pathways and their biological impact on key aspects of proteome homeostasis and cellular function in health and disease.

3.
Science ; 348(6241): 1369-72, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26089517

RESUMO

During clathrin-mediated endocytosis (CME), plasma membrane regions are internalized to retrieve extracellular molecules and cell surface components. Whether endocytosis occurs by direct clathrin assembly into curved lattices on the budding vesicle or by initial recruitment to flat membranes and subsequent reshaping has been controversial. To distinguish between these models, we combined fluorescence microscopy and electron tomography to locate endocytic sites and to determine their coat and membrane shapes during invagination. The curvature of the clathrin coat increased, whereas the coated surface area remained nearly constant. Furthermore, clathrin rapidly exchanged at all stages of CME. Thus, coated vesicle budding appears to involve bending of a dynamic preassembled clathrin coat.


Assuntos
Clatrina/química , Invaginações Revestidas da Membrana Celular/química , Endocitose , Linhagem Celular , Tomografia com Microscopia Eletrônica , Recuperação de Fluorescência Após Fotodegradação , Humanos , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa