Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Physiol ; 600(1): 111-122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783012

RESUMO

α2δ proteins (CACNA2D1-4) are required for normal neurological function and contribute to membrane trafficking of voltage-gated calcium channels, through which calcium entry initiates numerous physiological processes. However, it remains unclear how α2δ proteins influence calcium-mediated signalling to control neuronal output. Using whole-cell recordings of mouse Purkinje cells, we show that α2δ-2 is required for functional coupling of postsynaptic voltage-dependent calcium entry with calcium-dependent effector mechanisms controlling two different outputs, depolarization-induced suppression of excitation and spike afterhyperpolarization. Our findings indicate an important role for α2δ-2 proteins in regulating functional postsynaptic calcium channel coupling in neurons, providing new context for understanding the effects of α2δ mutations on neuronal circuit function and presenting additional potential avenues to manipulate α2δ-mediated signalling for therapeutic gain. KEY POINTS: Calcium influx, via voltage-dependent calcium channels, drives numerous neuronal signalling processes with precision achieved in part by tight coupling between calcium entry and calcium-dependent effectors. α2δ proteins are important for neurological function and contribute to calcium channel membrane trafficking, although how α2δ proteins influence postsynaptic calcium-dependent signalling is largely unexplored. Here it is shown that loss of α2δ-2 proteins disrupts functional calcium coupling to two different postsynaptic calcium-dependent signals in mouse Purkinje cell neurons, retrograde endocannabinoid signalling and the action potential afterhyperpolarization. The findings provide new insights into the control of calcium coupling as well as new roles for α2δ-2 proteins in neurons.


Assuntos
Canais de Cálcio , Células de Purkinje , Animais , Sinalização do Cálcio , Camundongos , Neurônios , Técnicas de Patch-Clamp
2.
J Neurosci ; 40(12): 2403-2415, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32086258

RESUMO

α2δ proteins (Cacna2d1-4) are auxiliary subunits of voltage-dependent calcium channels that also drive synapse formation and maturation. Because cerebellar Purkinje cells (PCs) predominantly, if not exclusively, express one isoform of this family, α2δ-2 (Cacna2d2), we used PCs as a model system to examine roles of α2δ in excitatory synaptic function in male and female Cacna2d2 knock-out (KO) mice. Whole-cell recordings of PCs from acute cerebellar slices revealed altered climbing fiber (CF)-evoked complex spike generation, as well as increased amplitude and faster decay of CF-evoked EPSCs. CF terminals in the KO were localized more proximally on PC dendrites, as indicated by VGLUT2+ immunoreactive puncta, and computational modeling demonstrated that the increased EPSC amplitude can be partly attributed to the more proximal location of CF terminals. In addition, CFs in KO mice exhibited increased multivesicular transmission, corresponding to greater sustained responses during repetitive stimulation, despite a reduction in the measured probability of release. Electron microscopy demonstrated that mutant CF terminals had twice as many vesicle release sites, providing a morphologic explanation for the enhanced glutamate release. Though KO CFs evoked larger amplitude EPSCs, the charge transfer was the same as wild-type as a result of increased glutamate reuptake, producing faster decay kinetics. Together, the larger, faster EPSCs in the KO explain the altered complex spike responses, which degrade information transfer from PCs and likely contribute to ataxia in Cacna2d2 KO mice. Our results also illustrate the multidimensional synaptic roles of α2δ proteins.SIGNIFICANCE STATEMENT α2δ proteins (Cacna2d1-4) regulate synaptic transmission and synaptogenesis, but coexpression of multiple α2δ isoforms has obscured a clear understanding of how various α2δ proteins control synaptic function. We focused on roles of the α2δ-2 protein (Cacna2d2), the deletion of which causes cerebellar ataxia and epilepsy in mice and humans. Because cerebellar Purkinje cells (PCs) only express this single isoform, we studied excitatory climbing fiber synaptic function onto PCs in Cacna2d2 KO mice. Using optical and electrophysiological analysis, we provide a detailed description of the changes in PCs lacking α2δ-2, and provide a comprehensive mechanistic explanation for how functional synaptic phenotypes contribute to the altered cerebellar output.


Assuntos
Canais de Cálcio/fisiologia , Cerebelo/fisiologia , Fibras Nervosas/fisiologia , Células de Purkinje/fisiologia , Sinapses/fisiologia , Animais , Canais de Cálcio Tipo L , Cerebelo/citologia , Simulação por Computador , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura
3.
J Neurosci ; 36(5): 1669-81, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843648

RESUMO

The ventrolateral periaqueductal gray (vlPAG) is a key structure in the descending pain modulatory circuit. Activation of the circuit occurs via disinhibition of GABAergic inputs onto vlPAG output neurons. In these studies, we tested the hypothesis that GABAergic inhibition is increased during persistent inflammation, dampening activation of the descending circuit from the vlPAG. Our results indicate that persistent inflammation induced by Complete Freund's adjuvant (CFA) modulates GABA signaling differently in male and female rats. CFA treatment results in increased presynaptic GABA release but decreased high-affinity tonic GABAA currents in female vlPAG neurons. These effects are not observed in males. The tonic currents in the vlPAG are dependent on GABA transporter activity and are modulated by agonists that activate GABAA receptors containing the δ subunit. The GABAA δ agonist THIP (gaboxadol) induced similar amplitude currents in naive and CFA-treated rats. In addition, a positive allosteric modulator of the GABAA δ subunit, DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]benzamide), increased tonic currents. These results indicate that GABAA δ receptors remain on the cell surface but are less active in CFA-treated female rats. In vivo behavior studies showed that morphine induced greater antinociception in CFA-treated females that was reversed with microinjections of DS2 directly into the vlPAG. DS2 did not affect morphine antinociception in naive or CFA-treated male rats. Together, these data indicate that sex-specific adaptations in GABAA receptor signaling modulate opioid analgesia in persistent inflammation. Antagonists of GABAA δ receptors may be a viable strategy for reducing pain associated with persistent inflammation, particularly in females. SIGNIFICANCE STATEMENT: These studies demonstrate that GABA signaling is modulated in the ventrolateral periaqueductal gray by persistent inflammation differently in female and male rats. Our results indicate that antagonists or negative allosteric modulators of GABAA δ receptors may be an effective strategy to alleviate chronic inflammatory pain and promote opioid antinociception, especially in females.


Assuntos
Dor Crônica/fisiopatologia , Substância Cinzenta Periaquedutal/fisiologia , Receptores de GABA-A/fisiologia , Caracteres Sexuais , Transdução de Sinais/fisiologia , Animais , Dor Crônica/etiologia , Relação Dose-Resposta a Droga , Feminino , Agonistas GABAérgicos/farmacologia , Temperatura Alta/efeitos adversos , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
4.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38749701

RESUMO

The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy (TLE) in hippocampal tissue from wild-type (WT) and α2δ-2 knock-out (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos and ΔFosB expressions within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 h after handling-associated convulsions, KO mice had fewer c-fos-positive cells but dramatically increased ΔFosB expression in the dentate gyrus compared with WT mice. After administration of a subthreshold pentylenetetrazol dose, however, KO mice dentate had significantly more c-fos expression compared with WT mice. Other histopathological markers of TLE in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar between WT and KO mice, apart from a small but statistically significant increase in hilar mossy cell density, opposite to what is typically found in mice with TLE. This suggests that the differences in seizure-associated dentate gyrus function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.


Assuntos
Hipocampo , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos , Convulsões , Animais , Convulsões/metabolismo , Convulsões/genética , Convulsões/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Masculino , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Camundongos Endogâmicos C57BL , Pentilenotetrazol , Camundongos , Modelos Animais de Doenças , Neurônios/metabolismo , Neurônios/patologia , Convulsivantes/toxicidade
5.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986872

RESUMO

The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy in hippocampal tissue from wildtype (WT) and α2δ-2 knockout (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos expression within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 hour after handling-associated convulsions, KO mice had fewer c-fos-positive cells in the dentate gyrus, indicating that activity in the dentate gyrus actually decreased. However, the dentate was significantly more active in KO mice compared to WT after administration of a subthreshold pentylenetetrazole dose, consistent with increased susceptibility to proconvulsant stimuli. Other histopathological markers of temporal lobe epilepsy in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar in WT and KO mice, apart from a small but significant increase in hilar mossy cell density, opposite to what is typically found in mice with temporal lobe epilepsy. This suggests that the differences in seizure-associated hippocampal function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.

6.
PLoS One ; 10(7): e0131842, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222911

RESUMO

BACKGROUND: We tested the hypothesis that αv-integrin and the human epidermal growth factor receptor type 2 (HER2) interact with each other in brain trophic metastatic breast cancer cells and influence their invasive phenotype. METHODS: Clones of MDA-MB231BR human breast cancer cells with stable knock down of αv-integrin in combination with high or low levels of HER2 were created. The interactions of these two proteins and their combined effect on cell migration and invasion were investigated in vitro and in vivo. RESULTS: Knockdown of αv-integrin in MDA-MB231BR clones altered the actin cytoskeleton and cell morphology. HER2 co-precipitated with αv-integrin in three breast cancer cell lines in vitro, suggesting they complex in cells. Knockdown of αv-integrin altered HER2 localization from its normal membrane position to a predominantly lysosomal localization. When αv-integrin expression was decreased by 69-93% in HER2-expressing cells, cellular motility was significantly reduced. Deficiency of both αv-integrin and HER2 decreased cellular migration and invasion by almost 90% compared to cells expressing both proteins (P<0.01). After intracerebral inoculation, cells expressing high levels of both αv-integrin and HER2 showed a diffusely infiltrative tumor phenotype, while cells deficient in αv-integrin and/or HER2 showed a compact tumor growth phenotype. In the αv-integrin positive/HER2 positive tumors, infiltrative growth was 57.2 ± 19% of tumor volume, compared to only 5.8 ± 6.1% infiltration in the double deficient tumor cells. CONCLUSIONS: αv-integrin interacts with HER2 in breast cancer cells and may regulate HER2 localization. The combined impacts of αv-integrin and HER2 influence the invasive phenotype of breast cancer cells. Targeting αv-integrin in HER2-positive breast cancer may slow growth and decrease infiltration in the normal brain.


Assuntos
Encéfalo/metabolismo , Neoplasias da Mama/metabolismo , Integrina alfaV/metabolismo , Receptor ErbB-2/metabolismo , Animais , Encéfalo/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Integrina alfaV/genética , Invasividade Neoplásica , Transplante de Neoplasias , Ratos , Receptor ErbB-2/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa