Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO J ; 32(21): 2819-32, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24076654

RESUMO

The transcription factor Nanog plays a critical role in the self-renewal of embryonic stem cells as well as in neural stem cells (NSCs). microRNAs (miRNAs) are also involved in stemness regulation. However, the miRNA network downstream of Nanog is still poorly understood. High-throughput screening of miRNA expression profiles in response to modulated levels of Nanog in postnatal NSCs identifies miR-17-92 cluster as a direct target of Nanog. Nanog controls miR-17-92 cluster by binding to the upstream regulatory region and maintaining high levels of transcription in NSCs, whereas Nanog/promoter association and cluster miRNAs expression are lost alongside differentiation. The two miR-17 family members of miR-17-92 cluster, namely miR-17 and miR-20a, target Trp53inp1, a downstream component of p53 pathway. To support a functional role, the presence of miR-17/20a or the loss of Trp53inp1 is required for the Nanog-induced enhancement of self-renewal of NSCs. We unveil an arm of the Nanog/p53 pathway, which regulates stemness in postnatal NSCs, wherein Nanog counteracts p53 signals through miR-17/20a-mediated repression of Trp53inp1.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Ciclo Celular , Proliferação de Células , Células Cultivadas , Cerebelo/citologia , Proteínas de Choque Térmico/genética , Proteínas de Homeodomínio/genética , Camundongos , MicroRNAs/genética , Proteína Homeobox Nanog , Células-Tronco Neurais/citologia
2.
BMC Cancer ; 17(1): 488, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716052

RESUMO

BACKGROUND: Aberrant Sonic Hedgehog/Gli (Hh/Gli) signaling pathway is a critical regulator of Sonic hedgehog medulloblastoma (SHH-MB). Cancer stem cells (CSCs), thought to be largely responsible for tumor initiation, maintenance, dissemination and relapse, have been identified in SHH-MB. Since we previously demonstrated that Hh/Gli signaling controls CSCs features in SHH-MB and that in these tumors miR-326 is down regulated, here we investigated whether there is a functional link between Hh/Gli signaling and miR-326. METHODS: We evaluated ß-arrestin1 (Arrb1) and its intragenic miR-326 levels in CSCs derived from SHH-MB. Subsequently, we modulated the expression of Arrb1 and miR-326 in CSCs in order to gain insight into their biological role. We also analyzed the mechanism by which Arrb1 and miR-326 control Hh/Gli signaling and self-renewal, using luciferase and protein immunoprecipitation assays. RESULTS: Low levels of Arrb1 and miR-326 represent a feature of CSCs derived from SHH-MB. We observed that re-expression of Arrb1 and miR-326 inhibits Hh/Gli signaling pathway at multiple levels, which cause impaired proliferation and self-renewal, accompanied by down regulation of Nanog levels. In detail, miR-326 negatively regulates two components of the Hh/Gli pathway the receptor Smoothened (Smo) and the transcription factor Gli2, whereas Arrb1 suppresses the transcriptional activity of Gli1, by potentiating its p300-mediated acetylation. CONCLUSIONS: Our results identify a new molecular mechanism involving miR-326 and Arrb1 as regulators of SHH-MB CSCs. Specifically, low levels of Arrb1 and miR-326 trigger and maintain Hh/Gli signaling and self-renewal.


Assuntos
Meduloblastoma/genética , MicroRNAs/genética , Proteína GLI1 em Dedos de Zinco/genética , beta-Arrestina 1/genética , Autorrenovação Celular , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/genética
4.
Methods Mol Biol ; 2366: 293-303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236646

RESUMO

The reprogramming of cell metabolism is a hallmark of cancer. NF-κB transcription factors coordinate the host defense responses to stress, injury, and infection. They also play a central role in oncogenesis, at least in part by regulating cell metabolism and the adaptation to energy stress conditions in various types of cancer, such as colorectal carcinoma (CRC). Here, we describe the XF Cell Mito Stress Test methodology aimed at characterizing the metabolic and bioenergetic profile of CRC cells following the silencing of the essential NF-κB subunit, RelA. This methodology may also be applied to other cancers to reveal novel core vulnerabilities of malignant cells.


Assuntos
Neoplasias Colorretais , Neoplasias Colorretais/metabolismo , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Respiração , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
5.
J Clin Invest ; 131(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878036

RESUMO

The ability to adapt to low-nutrient microenvironments is essential for tumor cell survival and progression in solid cancers, such as colorectal carcinoma (CRC). Signaling by the NF-κB transcription factor pathway associates with advanced disease stages and shorter survival in patients with CRC. NF-κB has been shown to drive tumor-promoting inflammation, cancer cell survival, and intestinal epithelial cell (IEC) dedifferentiation in mouse models of CRC. However, whether NF-κB affects the metabolic adaptations that fuel aggressive disease in patients with CRC is unknown. Here, we identified carboxylesterase 1 (CES1) as an essential NF-κB-regulated lipase linking obesity-associated inflammation with fat metabolism and adaptation to energy stress in aggressive CRC. CES1 promoted CRC cell survival via cell-autonomous mechanisms that fuel fatty acid oxidation (FAO) and prevent the toxic build-up of triacylglycerols. We found that elevated CES1 expression correlated with worse outcomes in overweight patients with CRC. Accordingly, NF-κB drove CES1 expression in CRC consensus molecular subtype 4 (CMS4), which is associated with obesity, stemness, and inflammation. CES1 was also upregulated by gene amplifications of its transcriptional regulator HNF4A in CMS2 tumors, reinforcing its clinical relevance as a driver of CRC. This subtype-based distribution and unfavorable prognostic correlation distinguished CES1 from other intracellular triacylglycerol lipases and suggest CES1 could provide a route to treat aggressive CRC.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Neoplasias Colorretais/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Triglicerídeos/metabolismo , Hidrolases de Éster Carboxílico/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Proteínas de Neoplasias/genética , Triglicerídeos/genética
6.
Toxicol Rep ; 6: 369-379, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080744

RESUMO

Aberrant NF-κB activity drives oncogenesis and cell survival in multiple myeloma (MM) and many other cancers. However, despite an aggressive effort by the pharmaceutical industry over the past 30 years, no specific IκBα kinase (IKK)ß/NF-κB inhibitor has been clinically approved, due to the multiple dose-limiting toxicities of conventional NF-κB-targeting drugs. To overcome this barrier to therapeutic NF-κB inhibition, we developed the first-in-class growth arrest and DNA-damage-inducible (GADD45)ß/mitogen-activated protein kinase kinase (MKK)7 inhibitor, DTP3, which targets an essential, cancer-selective cell-survival module downstream of the NF-κB pathway. As a result, DTP3 specifically kills MM cells, ex vivo and in vivo, ablating MM xenografts in mice, with no apparent adverse effects, nor evident toxicity to healthy cells. Here, we report the results from the preclinical regulatory pharmacodynamic (PD), safety pharmacology, pharmacokinetic (PK), and toxicology programmes of DTP3, leading to the approval for clinical trials in oncology. These results demonstrate that DTP3 combines on-target-selective pharmacology, therapeutic anticancer efficacy, favourable drug-like properties, long plasma half-life and good bioavailability, with no target-organs of toxicity and no adverse effects preclusive of its clinical development in oncology, upon daily repeat-dose administration in both rodent and non-rodent species. Our study underscores the clinical potential of DTP3 as a conceptually novel candidate therapeutic selectively blocking NF-κB survival signalling in MM and potentially other NF-κB-driven cancers.

7.
Int J Biochem Cell Biol ; 95: 108-112, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29277662

RESUMO

Constitutive NF-κB signalling has been implicated in the pathogenesis of most human malignancies and virtually all non-malignant pathologies. Accordingly, the NF-κB pathway has been aggressively pursued as an attractive therapeutic target for drug discovery. However, the severe on-target toxicities associated with systemic NF-κB inhibition have thus far precluded the development of a clinically useful, NF-κB-targeting medicine as a way to treat patients with either oncological or non-oncological diseases. This minireview discusses some of the more promising approaches currently being developed to circumvent the preclusive safety liabilities of global NF-κB blockade by selectively targeting pathogenic NF-κB signalling in cancer, while preserving the multiple physiological functions of NF-κB in host defence responses and tissue homeostasis.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Drogas em Investigação/uso terapêutico , Modelos Biológicos , NF-kappa B/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Drogas em Investigação/efeitos adversos , Drogas em Investigação/química , Drogas em Investigação/farmacologia , Humanos , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/tendências , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
8.
Cancer Res ; 78(5): 1275-1292, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29279355

RESUMO

T-cell exclusion from the tumor microenvironment (TME) is a major barrier to overcoming immune escape. Here, we identify a myeloid-intrinsic mechanism governed by the NF-κB effector molecule GADD45ß that restricts tumor-associated inflammation and T-cell trafficking into tumors. In various models of solid cancers refractory to immunotherapies, including hepatocellular carcinoma and ovarian adenocarcinoma, Gadd45b inhibition in myeloid cells restored activation of proinflammatory tumor-associated macrophages (TAM) and intratumoral immune infiltration, thereby diminishing oncogenesis. Our results provide a basis to interpret clinical evidence that elevated expression of GADD45B confers poor clinical outcomes in most human cancers. Furthermore, they suggest a therapeutic target in GADD45ß for reprogramming TAM to overcome immunosuppression and T-cell exclusion from the TME.Significance: These findings define a myeloid-based immune checkpoint that restricts T-cell trafficking into tumors, with potentially important therapeutic implications to generally improve the efficacy of cancer immunotherapy. Cancer Res; 78(5); 1275-92. ©2017 AACR.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/fisiologia , Carcinoma Hepatocelular/imunologia , Tolerância Imunológica/imunologia , Terapia de Imunossupressão , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Antígenos de Diferenciação/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Neoplasias/genética , Neoplasias/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Células Tumorais Cultivadas
9.
Biomedicines ; 5(3)2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829404

RESUMO

Transcription factors of the nuclear factor κB (NF-κB) family are central coordinating regulators of the host defence responses to stress, injury and infection. Aberrant NF-κB activation also contributes to the pathogenesis of some of the most common current threats to global human health, including chronic inflammatory diseases, autoimmune disorders, diabetes, vascular diseases and the majority of cancers. Accordingly, the NF-κB pathway is widely considered an attractive therapeutic target in a broad range of malignant and non-malignant diseases. Yet, despite the aggressive efforts by the pharmaceutical industry to develop a specific NF-κB inhibitor, none has been clinically approved, due to the dose-limiting toxicities associated with the global suppression of NF-κB. In this review, we summarise the main strategies historically adopted to therapeutically target the NF-κB pathway with an emphasis on oncology, and some of the emerging strategies and newer agents being developed to pharmacologically inhibit this pathway.

10.
Stem Cells Int ; 2017: 5274171, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28298929

RESUMO

Cell development is regulated by a complex network of mRNA-encoded proteins and microRNAs, all funnelling onto the modulation of self-renewal or differentiation genes. How intragenic microRNAs and their host genes are transcriptionally coregulated and their functional relationships for the control of neural stem cells (NSCs) are poorly understood. We propose here the intragenic miR-326 and its host gene ß-arrestin1 as novel players whose epigenetic silencing maintains stemness in normal cerebellar stem cells. Such a regulation is mediated by CpG islands methylation of the common promoter. Epigenetic derepression of ß-arrestin1/miR-326 by differentiation signals or demethylating agents leads to suppression of stemness features and cell growth and promotes cell differentiation. ß-Arrestin1 inhibits cell proliferation by enhancing the nuclear expression of the cyclin-dependent kinase inhibitor p27. Therefore, we propose a new mechanism for the control of cerebellar NSCs where a coordinated epigenetic mechanism finely regulates ß-arrestin1/miR-326 expression and consequently NSCs stemness and cell growth.

12.
Neuro Oncol ; 16(2): 228-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24305714

RESUMO

BACKGROUND: High-grade gliomas (HGGs) account for 15% of all pediatric brain tumors and are a leading cause of cancer-related mortality and morbidity. Pediatric HGGs (pHGGs) are histologically indistinguishable from their counterpart in adulthood. However, recent investigations indicate that differences occur at the molecular level, thus suggesting that the molecular path to gliomagenesis in childhood is distinct from that of adults. MicroRNAs (miRNAs) have been identified as key molecules in gene expression regulation, both in development and in cancer. miRNAs have been investigated in adult high-grade gliomas (aHGGs), but scant information is available for pHGGs. METHODS: We explored the differences in microRNAs between pHGG and aHGG, in both fresh-frozen and paraffin-embedded tissue, by high-throughput miRNA profiling. We also evaluated the biological effects of miR-17-92 cluster silencing on a pHGG cell line. RESULTS: Comparison of miRNA expression patterns in formalin versus frozen specimens resulted in high correlation between both types of samples. The analysis of miRNA profiling revealed a specific microRNA pattern in pHGG with an overexpression and a proliferative role of the miR-17-92 cluster. Moreover, we highlighted a possible quenching function of miR-17-92 cluster on its target gene PTEN, together with an activation of tumorigenic signaling such as sonic hedgehog in pHGG. CONCLUSIONS: Our results suggest that microRNA profiling represents a tool to distinguishing pediatric from adult HGG and that miR-17-92 cluster sustains pHGG.


Assuntos
Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica , Glioma/genética , MicroRNAs/genética , Adolescente , Adulto , Idoso , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Proliferação de Células , Criança , Pré-Escolar , Feminino , Seguimentos , Glioma/patologia , Humanos , Hibridização In Situ , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , RNA Longo não Codificante , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa