RESUMO
BACKGROUND: The 100,000 Genomes Project established infrastructure for Whole Genome Sequencing (WGS) in the United Kingdom. METHODS: A retrospective study of cancer patients recruited to the 100,000 Genomes Project by the West Midlands Genomics Medicine Centre, evaluating clinical relevance of results. RESULTS: After excluding samples with no sequencing data (1678/4851; 34.6%), 3166 sample sets (germline and somatic) from 3067 participants were sequenced. Results of 1256 participants (41.0%) were interpreted (excluding participants who died (308/3067; 10.0%) or were clinically excluded (1503/3067; 49.0%)). Of these, 323 (25.7%) had no variants in genes which may alter management (Domain 1 genes). Of the remaining 933 participants, 552 (59.2%) had clinical recommendations made (718 recommendations in total). These included therapeutic recommendations (377/933; 40.4%), such as clinical trial, unlicensed or licensed therapies or high TMB recommendations, and germline variants warranting clinical genetics review (85/933; 9.1%). At the last follow up, 20.2% of all recommendations were followed (145/718). However, only a small proportion of therapeutic recommendations were followed (5.1%, 25/491). CONCLUSIONS: The 100,000 Genomes Project has established infrastructure and regional experience to support personalised cancer care. The majority of those with successful sequencing had actionable variants. Ensuring GTAB recommendations are followed will maximise benefits for patients.
RESUMO
Early stages of colorectal cancer (CRC) development are characterized by a complex rewiring of transcriptional networks resulting in changes in the expression of multiple genes. Here, we demonstrate that the deletion of a poorly studied tetraspanin protein Tspan6 in Apcmin/+ mice, a well-established model for premalignant CRC, resulted in increased incidence of adenoma formation and tumor size. We demonstrate that the effect of Tspan6 deletion results in the activation of EGF-dependent signaling pathways through increased production of the transmembrane form of TGF-α (tmTGF-α) associated with extracellular vesicles. This pathway is modulated by an adaptor protein syntenin-1, which physically links Tspan6 and tmTGF-α. In support of this, the expression of Tspan6 is frequently decreased or lost in CRC, and this correlates with poor survival. Furthermore, the analysis of samples from the epidermal growth factor receptor (EGFR)-targeting clinical trial (COIN trial) has shown that the expression of Tspan6 in CRC correlated with better patient responses to EGFR-targeted therapy involving Cetuximab. Importantly, Tspan6-positive patients with tumors in the proximal colon (right-sided) and those with KRAS mutations had a better response to Cetuximab than the patients that expressed low Tspan6 levels. These results identify Tspan6 as a regulator of CRC development and a potential predictive marker for EGFR-targeted therapies in CRC beyond RAS pathway mutations.
Assuntos
Biomarcadores Tumorais/metabolismo , Cetuximab/farmacologia , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Tetraspaninas/metabolismo , Tetraspaninas/fisiologia , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prognóstico , Taxa de Sobrevida , Tetraspaninas/genética , Células Tumorais CultivadasRESUMO
A rapid isothermal method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, is reported. The procedure uses an unprecedented reverse transcription-free (RTF) approach for converting genomic RNA into DNA. This involves the formation of an RNA/DNA heteroduplex whose selective cleavage generates a short DNA trigger strand, which is then rapidly amplified using the exponential amplification reaction (EXPAR). Deploying the RNA-to-DNA conversion and amplification stages of the RTF-EXPAR assay in a single step results in the detection, via a fluorescence read-out, of single figure copy numbers per microliter of SARS-CoV-2 RNA in under 10 min. In direct three-way comparison studies, the assay has been found to be faster than both RT-qPCR and reverse transcription loop-mediated isothermal amplification (RT-LAMP), while being just as sensitive. The assay protocol involves the use of standard laboratory equipment and is readily adaptable for the detection of other RNA-based pathogens.
Assuntos
Teste para COVID-19/métodos , COVID-19/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/diagnóstico , Humanos , Transcrição Reversa , SARS-CoV-2/isolamento & purificação , Sensibilidade e EspecificidadeRESUMO
The ubiquitous host protein, CCCTC-binding factor (CTCF), is an essential regulator of cellular transcription and functions to maintain epigenetic boundaries, stabilise chromatin loops and regulate splicing of alternative exons. We have previously demonstrated that CTCF binds to the E2 open reading frame (ORF) of human papillomavirus (HPV) 18 and functions to repress viral oncogene expression in undifferentiated keratinocytes by co-ordinating an epigenetically repressed chromatin loop within HPV episomes. Keratinocyte differentiation disrupts CTCF-dependent chromatin looping of HPV18 episomes promoting induction of enhanced viral oncogene expression. To further characterise CTCF function in HPV transcription control we utilised direct, long-read Nanopore RNA-sequencing which provides information on the structure and abundance of full-length transcripts. Nanopore analysis of primary human keratinocytes containing HPV18 episomes before and after synchronous differentiation allowed quantification of viral transcript species, including the identification of low abundance novel transcripts. Comparison of transcripts produced in wild type HPV18 genome-containing cells to those identified in CTCF-binding deficient genome-containing cells identifies CTCF as a key regulator of differentiation-dependent late promoter activation, required for efficient E1^E4 and L1 protein expression. Furthermore, our data show that CTCF binding at the E2 ORF promotes usage of the downstream weak splice donor (SD) sites SD3165 and SD3284, to the dominant E4 splice acceptor site at nucleotide 3434. These findings demonstrate that in the HPV life cycle both early and late virus transcription programmes are facilitated by recruitment of CTCF to the E2 ORF.
Assuntos
Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular , Regulação Viral da Expressão Gênica , Papillomavirus Humano 18/genética , Infecções por Papillomavirus/virologia , Splicing de RNA , Proteínas Virais/genética , Fator de Ligação a CCCTC/genética , Cromatina/genética , Cromatina/metabolismo , Genoma Viral , Humanos , Queratinócitos/metabolismo , Queratinócitos/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Regiões Promotoras Genéticas , Replicação ViralRESUMO
There is increasing evidence in a range of cancer types that the microbiome plays a direct role in modulating the anti-cancer immune response both at the gut level and systemically. Differences in the gut microbiota have been shown to correlate with differences in immunotherapy responses in a range of non-gastrointestinal tract cancers. DNA mismatch repair-deficient (dMMR) colorectal cancer (CRC) is radically different to DNA mismatch repair-proficient (pMMR) CRC in clinical phenotype and in its very good responses to immunotherapy. While this has usually been thought to be due to the high mutational burden in dMMR CRC, the gut microbiome is radically different in dMMR and pMMR CRC in terms of both composition and diversity. It is probable that differences in the gut microbiota contribute to the varied responses to immunotherapy in dMMR versus pMMR CRC. Targeting the microbiome offers a way to boost the response and increase the selection of patients who might benefit from this therapy. This paper reviews the available literature on the role of the microbiome in the response to immunotherapy in dMMR and pMMR CRC, explores the potential causal relationship and discusses future directions for study in this exciting and rapidly changing field.
Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/tratamento farmacológico , Imunoterapia , Repetições de Microssatélites , Reparo de Erro de Pareamento de DNA , Instabilidade de MicrossatélitesRESUMO
Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy. They exhibited shortened telomeres similar to nonregressing CLL, indicating prior proliferation. They also displayed low Ki-67, CD49d, cell-surface immunoglobulin M (IgM) expression and IgM-signaling response but high CXCR4 expression, indicating low proliferative activity associated with poor migration to proliferation centers, with these features becoming increasingly marked during regression. Spontaneously regressed CLL displayed a transcriptome profile characterized by downregulation of metabolic processes as well as MYC and its downstream targets compared with nonregressing CLL. Moreover, spontaneous regression was associated with reversal of T-cell exhaustion features including reduced programmed cell death 1 expression and increased T-cell proliferation. Interestingly, archetypal CLL genomic aberrations including HIST1H1B and TP53 mutations and del(13q14) were found in some spontaneously regressing tumors, but genetic composition remained stable during regression. Conversely, a single case of CLL relapse following spontaneous regression was associated with increased BCR signaling, CLL proliferation, and clonal evolution. These observations indicate that spontaneously regressing CLL appear to undergo a period of proliferation before entering a more quiescent state, and that a complex interaction between genomic alterations and the microenvironment determines disease course. Together, the findings provide novel insight into the biological processes underpinning spontaneous CLL regression, with implications for CLL treatment.
Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proliferação de Células , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Imunoglobulina M/genética , Antígeno Ki-67/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Receptores CXCR4/genética , Microambiente TumoralRESUMO
Well differentiated liposarcoma (WD-LPS) is a relatively rare tumour, with fewer than 50 cases occurring per year in the UK. These tumours are both chemotherapy- and radiotherapy-resistant and present a significant treatment challenge requiring radical surgery. Little is known of the molecular landscape of these tumours and no current targets for molecular therapy exist. We aimed to carry out a comprehensive molecular characterisation of WD-LPS via whole genome sequencing, RNA sequencing, and methylation array analysis. A recurrent mutation within exon 1 of FOXD4L3 was observed (chr9:70,918,189A>T; c.322A>T; p.Lys108Ter). Recurrent mutations were also observed in Wnt signalling, immunity, DNA repair, and hypoxia-associated genes. Recurrent amplification of HGMA2 was observed, although this was in fact part of a general amplification of the region around this gene. Recurrent gene fusions in HGMA2, SDHA, TSPAN31, and MDM2 were also observed as well as consistent rearrangements between chromosome 6 and chromosome 12. Our study has demonstrated a recurrent mutation within FOXD4L3, which shows evidence of interaction with the PAX pathway to promote tumourigenesis. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Fatores de Transcrição Forkhead/genética , Lipossarcoma/genética , Neoplasias Retroperitoneais/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , MutaçãoRESUMO
OBJECTIVE: Complex phenotypes captured on histological slides represent the biological processes at play in individual cancers, but the link to underlying molecular classification has not been clarified or systematised. In colorectal cancer (CRC), histological grading is a poor predictor of disease progression, and consensus molecular subtypes (CMSs) cannot be distinguished without gene expression profiling. We hypothesise that image analysis is a cost-effective tool to associate complex features of tissue organisation with molecular and outcome data and to resolve unclassifiable or heterogeneous cases. In this study, we present an image-based approach to predict CRC CMS from standard H&E sections using deep learning. DESIGN: Training and evaluation of a neural network were performed using a total of n=1206 tissue sections with comprehensive multi-omic data from three independent datasets (training on FOCUS trial, n=278 patients; test on rectal cancer biopsies, GRAMPIAN cohort, n=144 patients; and The Cancer Genome Atlas (TCGA), n=430 patients). Ground truth CMS calls were ascertained by matching random forest and single sample predictions from CMS classifier. RESULTS: Image-based CMS (imCMS) accurately classified slides in unseen datasets from TCGA (n=431 slides, AUC)=0.84) and rectal cancer biopsies (n=265 slides, AUC=0.85). imCMS spatially resolved intratumoural heterogeneity and provided secondary calls correlating with bioinformatic prediction from molecular data. imCMS classified samples previously unclassifiable by RNA expression profiling, reproduced the expected correlations with genomic and epigenetic alterations and showed similar prognostic associations as transcriptomic CMS. CONCLUSION: This study shows that a prediction of RNA expression classifiers can be made from H&E images, opening the door to simple, cheap and reliable biological stratification within routine workflows.
Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica/genética , RNA/genética , Biomarcadores Tumorais/genética , Biópsia , Consenso , Conjuntos de Dados como Assunto , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Gradação de Tumores , Fenótipo , Valor Preditivo dos Testes , PrognósticoRESUMO
The complex life cycle of oncogenic human papillomavirus (HPV) initiates in undifferentiated basal epithelial keratinocytes where expression of the E6 and E7 oncogenes is restricted. Upon epithelial differentiation, E6/E7 transcription is increased through unknown mechanisms to drive cellular proliferation required to support virus replication. We report that the chromatin-organising CCCTC-binding factor (CTCF) promotes the formation of a chromatin loop in the HPV genome that epigenetically represses viral enhancer activity controlling E6/E7 expression. CTCF-dependent looping is dependent on the expression of the CTCF-associated Yin Yang 1 (YY1) transcription factor and polycomb repressor complex (PRC) recruitment, resulting in trimethylation of histone H3 at lysine 27. We show that viral oncogene up-regulation during cellular differentiation results from YY1 down-regulation, disruption of viral genome looping, and a loss of epigenetic repression of viral enhancer activity. Our data therefore reveal a key role for CTCF-YY1-dependent looping in the HPV life cycle and identify a regulatory mechanism that could be disrupted in HPV carcinogenesis.
Assuntos
Fator de Ligação a CCCTC/metabolismo , Papillomaviridae/genética , Fator de Transcrição YY1/metabolismo , Fator de Ligação a CCCTC/genética , Diferenciação Celular/genética , Cromatina/fisiologia , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Epigênese Genética/genética , Histonas/genética , Humanos , Regiões Promotoras Genéticas/genética , Proteínas Repressoras , Fatores de Transcrição , Ativação Transcricional/genética , Replicação Viral/genética , Replicação Viral/fisiologia , Fator de Transcrição YY1/genéticaRESUMO
LARP1 is an oncogenic RNA-binding protein required for ribosome biogenesis and cancer cell survival. From published in vitro studies, there is disparity over which of two different LARP1 protein isoforms (termed the long LI-LARP1 and short SI-LARP1) is the canonical. Here, after conducting a series of biochemical and cellular assays, we conclude that LI-LARP1 (NM_033551.3 > NP_056130.2) is the dominantly expressed form. We observe that SI-LARP1 (NM_015315.5> NP_056130.2) is epigenetically repressed and that this repression is evolutionarily conserved in all but a small subclade of mammalian species. As with other LARP family members, there are multiple potential LARP1 mRNA isoforms that appear to be censored within the nucleus. The capacity of the cell to modulate splicing and expression of these apparently 'redundant' mRNAs hints at contextually specific mechanisms of LARP1 expression.
Assuntos
Autoantígenos/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas/genética , Processamento Alternativo , Sequência de Aminoácidos , Autoantígenos/química , Autoantígenos/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Inativação Gênica , Humanos , Família Multigênica , Especificidade de Órgãos , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Antígeno SS-BRESUMO
AIM: The 100 000 Genomes Project was completed in 2019 with the objective of integrating genomic medicine into routine National Health Service (NHS) clinical pathways. This project and genomic research will revolutionize the way we practice colorectal surgery in the 21st century. This paper aims to provide an overview of genomic medicine and its implications for the colorectal surgeon. RESULTS: Within NHS England, consolidation has created seven regional Genomic Laboratory Hubs. DNA from solid tumours, including colorectal cancers, will be assessed using 500-gene panels, results will be fed back to Genome Tumour Advisory Boards. Identifying variants from biopsies earlier in the clinical pathway may alter surgical and other treatment options for patients. However, there is an important distinction between somatic variants within a tumour biopsy and germline variants that may suggest a heritable condition such as Lynch syndrome. Novel drugs, for example immunotherapy, will increase treatment options including downstaging cancers and changing the surgical approach. The use of circulating tumour DNA (liquid biopsies) will have applications in diagnosis, treatment and surveillance of cancer. There are many exciting potential future applications of this technology for offering personalized medicine that will require multidisciplinary working and the colorectal community. CONCLUSION: There are many challenges but also exciting opportunities to embed new 'omic' technologies and innovation into 21st century colorectal surgery. The next phase for the colorectal community is how we engage with this change, with questions around training, identification of genomic multidisciplinary team (MDT) champions and how we collaborate with the core members of the MDT, clinical geneticists and national genomic testing.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Cirurgiões , Neoplasias Colorretais/genética , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Genômica , Humanos , Medicina de Precisão , Medicina EstatalRESUMO
OBJECTIVE: Pathological Wnt pathway activation is a conserved hallmark of colorectal cancer. Wnt-activating mutations can be divided into: i) ligand-independent (LI) alterations in intracellular signal transduction proteins (Adenomatous polyposis coli, ß-catenin), causing constitutive pathway activation and ii) ligand-dependent (LD) mutations affecting the synergistic R-Spondin axis (RNF43, RSPO-fusions) acting through amplification of endogenous Wnt signal transmembrane transduction. Our aim was to exploit differential Wnt target gene expression to generate a mutation-agnostic biomarker for LD tumours. DESIGN: We undertook harmonised multi-omic analysis of discovery (n=684) and validation cohorts (n=578) of colorectal tumours collated from publicly available data and the Stratification in Colorectal Cancer Consortium. We used mutation data to establish molecular ground truth and subdivide lesions into LI/LD tumour subsets. We contrasted transcriptional, methylation, morphological and clinical characteristics between groups. RESULTS: Wnt disrupting mutations were mutually exclusive. Desmoplastic stromal upregulation of RSPO may compensate for absence of epithelial mutation in a subset of stromal-rich tumours. Key Wnt negative regulator genes were differentially expressed between LD/LI tumours, with targeted hypermethylation of some genes (AXIN2, NKD1) occurring even in CIMP-negative LD cancers. AXIN2 mRNA expression was used as a discriminatory molecular biomarker to distinguish LD/LI tumours (area under the curve >0.93). CONCLUSIONS: Epigenetic suppression of appropriate Wnt negative feedback loops is selectively advantageous in LD tumours and differential AXIN2 expression in LD/LI lesions can be exploited as a molecular biomarker. Distinguishing between LD/LI tumour types is important; patients with LD tumours retain sensitivity to Wnt ligand inhibition and may be stratified at diagnosis to clinical trials of Porcupine inhibitors.
Assuntos
Neoplasias Colorretais/diagnóstico , Transdução de Sinais/genética , Proteína Wnt1/metabolismo , Idoso , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Marcadores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Wnt1/genéticaRESUMO
OBJECTIVE: To determine the rates of asymptomatic viral carriage and seroprevalence of SARS-CoV-2 antibodies in healthcare workers. DESIGN: A cross-sectional study of asymptomatic healthcare workers undertaken on 24/25 April 2020. SETTING: University Hospitals Birmingham NHS Foundation Trust (UHBFT), UK. PARTICIPANTS: 545 asymptomatic healthcare workers were recruited while at work. Participants were invited to participate via the UHBFT social media. Exclusion criteria included current symptoms consistent with COVID-19. No potential participants were excluded. INTERVENTION: Participants volunteered a nasopharyngeal swab and a venous blood sample that were tested for SARS-CoV-2 RNA and anti-SARS-CoV-2 spike glycoprotein antibodies, respectively. Results were interpreted in the context of prior illnesses and the hospital departments in which participants worked. MAIN OUTCOME MEASURE: Proportion of participants demonstrating infection and positive SARS-CoV-2 serology. RESULTS: The point prevalence of SARS-CoV-2 viral carriage was 2.4% (n=13/545). The overall seroprevalence of SARS-CoV-2 antibodies was 24.4% (n=126/516). Participants who reported prior symptomatic illness had higher seroprevalence (37.5% vs 17.1%, χ2=21.1034, p<0.0001) and quantitatively greater antibody responses than those who had remained asymptomatic. Seroprevalence was greatest among those working in housekeeping (34.5%), acute medicine (33.3%) and general internal medicine (30.3%), with lower rates observed in participants working in intensive care (14.8%). BAME (Black, Asian and minority ethnic) ethnicity was associated with a significantly increased risk of seropositivity (OR: 1.92, 95% CI 1.14 to 3.23, p=0.01). Working on the intensive care unit was associated with a significantly lower risk of seropositivity compared with working in other areas of the hospital (OR: 0.28, 95% CI 0.09 to 0.78, p=0.02). CONCLUSIONS AND RELEVANCE: We identify differences in the occupational risk of exposure to SARS-CoV-2 between hospital departments and confirm asymptomatic seroconversion occurs in healthcare workers. Further investigation of these observations is required to inform future infection control and occupational health practices.
Assuntos
Anticorpos Antivirais/sangue , Doenças Assintomáticas , COVID-19/diagnóstico , Pessoal de Saúde/estatística & dados numéricos , Pandemias , SARS-CoV-2/imunologia , Adulto , COVID-19/epidemiologia , COVID-19/virologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/análise , SARS-CoV-2/genética , Estudos SoroepidemiológicosRESUMO
INTRODUCTION: Traumatic brain injury (TBI) is the most common cause of death on the modern battlefield. In recent conflicts in Iraq and Afghanistan, the US typically deployed neurosurgeons to medical treatment facilities (MTFs), while the UK did not. Our aim was to compare the incidence, TBI and treatment in US and UK-led military MTF to ascertain if differences in deployed trauma systems affected outcomes. METHODS: The US and UK Combat Trauma Registries were scrutinised for patients with HI at deployed MTFs between March 2003 and October 2011. Registry datasets were adapted to stratify TBI using the Mayo Classification System for Traumatic Brain Injury Severity. An adjusted multiple logistic regression model was performed using fatality as the binomial dependent variable and treatment in a US-MTF or UK-MTF, surgical decompression, US military casualty and surgery performed by a neurosurgeon as independent variables. RESULTS: 15 031 patients arrived alive at military MTF after TBI. Presence of a neurosurgeon was associated with increased odds of survival in casualties with moderate or severe TBI (p<0.0001, OR 2.71, 95% CI 2.34 to 4.73). High injury severity (Injury Severity Scores 25-75) was significantly associated with a lower survival (OR 4×104, 95% CI 1.61×104 to 110.6×104, p<0.001); however, having a neurosurgeon present still remained significantly positively associated with survival (OR 3.25, 95% CI 2.71 to 3.91, p<0.001). CONCLUSIONS: Presence of neurosurgeons increased the likelihood of survival after TBI. We therefore recommend that the UK should deploy neurosurgeons to forward military MTF whenever possible in line with their US counterparts.
Assuntos
Lesões Encefálicas Traumáticas/mortalidade , Militares , Procedimentos Neurocirúrgicos , Adulto , Campanha Afegã de 2001- , Lesões Encefálicas Traumáticas/cirurgia , Feminino , Humanos , Escala de Gravidade do Ferimento , Guerra do Iraque 2003-2011 , Masculino , Neurocirurgiões , Estudos Retrospectivos , Taxa de Sobrevida , Reino Unido , Estados UnidosRESUMO
OBJECTIVE: To investigate differences in methylation between patients with nondysplastic Barrett esophagus who progress to invasive adenocarcinoma and those who do not. BACKGROUND: Identifying patients with nondysplastic Barrett esophagus who progress to invasive adenocarcinoma remains a challenge. Previous studies have demonstrated the potential utility of epigenetic markers for identifying this group. METHODS: A whole genome methylation interrogation using the Illumina HumanMethylation 450 array of patients with nondysplastic Barrett esophagus who either develop adenocarcinoma or remain static, with validation of findings by bisulfite pyrosequencing. RESULTS: In all, 12 patients with "progressive" versus 12 with "nonprogressive" nondysplastic Barrett esophagus were analyzed via methylation array. Forty-four methylation markers were identified that may be able to discriminate between nondysplastic Barrett esophagus that either progress to adenocarcinoma or remain static. Hypomethylation of the recently identified tumor suppressor OR3A4 (probe cg09890332) validated in a separate cohort of samples (median methylation in progressors 67.8% vs 96.7% in nonprogressors; P = 0.0001, z = 3.85, Wilcoxon rank-sum test) and was associated with the progression to adenocarcinoma. There were no differences in copy number between the 2 groups, but a global trend towards hypomethylation in the progressor group was observed. CONCLUSION: Hypomethylation of OR3A4 has the ability to risk stratify the patient with nondysplastic Barrett esophagus and may form the basis of a future surveillance program.
Assuntos
Adenocarcinoma/genética , Esôfago de Barrett/genética , Biomarcadores Tumorais/genética , Metilação de DNA , Neoplasias Esofágicas/genética , Lesões Pré-Cancerosas/genética , Adenocarcinoma/patologia , Adulto , Esôfago de Barrett/patologia , Estudos de Casos e Controles , Biologia Computacional , Bases de Dados Factuais , Progressão da Doença , Neoplasias Esofágicas/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Lesões Pré-Cancerosas/patologia , Medição de RiscoRESUMO
OBJECTIVES: To develop a focused panel of somatic mutations (SMs) present in the majority of urothelial bladder cancers (UBCs), to investigate the diagnostic and prognostic utility of this panel, and to compare the identification of SMs in urinary cell-pellet (cp)DNA and cell-free (cf)DNA as part of the development of a non-invasive clinical assay. PATIENTS AND METHODS: A panel of SMs was validated by targeted deep-sequencing of tumour DNA from 956 patients with UBC. In addition, amplicon and capture-based targeted sequencing measured mutant allele frequencies (MAFs) of SMs in 314 urine cpDNAs and 153 urine cfDNAs. The association of SMs with grade, stage, and clinical outcomes was investigated by univariate and multivariate Cox models. Concordance between SMs detected in tumour tissue and cpDNA and cfDNA was assessed. RESULTS: The panel comprised SMs in 23 genes: TERT (promoter), FGFR3, PIK3CA, TP53, ERCC2, RHOB, ERBB2, HRAS, RXRA, ELF3, CDKN1A, KRAS, KDM6A, AKT1, FBXW7, ERBB3, SF3B1, CTNNB1, BRAF, C3orf70, CREBBP, CDKN2A, and NRAS; 93.5-98.3% of UBCs of all grades and stages harboured ≥1 SM (mean: 2.5 SMs/tumour). RAS mutations were associated with better overall survival (P = 0.04). Mutations in RXRA, RHOB and TERT (promoter) were associated with shorter time to recurrence (P < 0.05). MAFs in urinary cfDNA and cpDNA were highly correlated; using a capture-based approach, >94% of tumour SMs were detected in both cpDNA and cfDNA. CONCLUSIONS: SMs are reliably detected in urinary cpDNA and cfDNA. The technical capability to identify very low MAFs is essential to reliably detect UBC, regardless of the use of cpDNA or cfDNA. This 23-gene panel shows promise for the non-invasive diagnosis and risk stratification of UBC.
Assuntos
DNA de Neoplasias/urina , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação/genética , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Medição de Risco , Análise de Sequência de DNARESUMO
OBJECTIVE: MicroRNAs (miRNAs) are used as biomarkers in cardiovascular disease and cancer. miRNAs are involved in placental development but have not previously been investigated in twin-twin transfusion syndrome (TTTS). Our aim is to explore the miRNA profile of TTTS pregnancies. METHOD: Initial miRNA profiling was performed using a reverse transcription polymerase chain reaction (RT-PCR) panel on maternal serum samples taken from five women prior to fetoscopic laser ablation for TTTS and compared with serum samples from five women with uncomplicated monochorionic diamniotic twin pregnancies. Validation RT-PCR was performed in an additional cohort of eight TTTS pregnancies and eight uncomplicated pregnancies. RESULTS: Median gestational age at sampling in the TTTS and control groups was 20+0 weeks (interquartile range [IQR], 19+4 -20+0 ) and 20+2 weeks (IQR, 20+0 -20+2 ), respectively. All samples passed quality control. One control sample was excluded as a biological outlier. Thirty-one of 752 miRNAs were significantly different: 17 were upregulated and 14 downregulated in the TTTS group, although they did not remain significant following Benjamini-Hochberg correction for multiple testing. The six miRNAs chosen for validation demonstrated no significant difference. CONCLUSION: This is the first study to investigate miRNA changes in TTTS pregnancies. We did not demonstrate a statistically significant difference in miRNAs in TTTS pregnancies, but further investigation is required.
Assuntos
Transfusão Feto-Fetal/sangue , Transfusão Feto-Fetal/diagnóstico , MicroRNAs/sangue , Gravidez de Gêmeos/sangue , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , MicroRNAs/análise , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Gêmeos Monozigóticos , Adulto JovemRESUMO
Serrated adenomas form a distinct subtype of colorectal pre-malignant lesions that may progress to malignancy along a different molecular pathway than the conventional adenoma-carcinoma pathway. Previous studies have hypothesised that BRAF mutation and promoter hypermethylation plays a role, but the evidence for this is not robust. We aimed to carry out a whole-genome loss of heterozygosity analysis, followed by targeted promoter methylation and expression analysis to identify potential pathways in serrated adenomas. An initial panel of 9 sessile serrated adenomas (SSA) and one TSA were analysed using Illumina Goldengate HumanLinkage panel arrays to ascertain regions of loss of heterozygosity. This was verified via molecular inversion probe analysis and microsatellite analysis of a further 32 samples. Methylation analysis of genes of interest was carried out using methylation specific PCR (verified by pyrosequencing) and immunohistochemistry used to correlate loss of expression of genes of interest. All experiments used adenoma samples and normal tissue samples as control. SSA samples were found on whole-genome analysis to have consistent loss of heterozygosity at 4p15.1-4p15.31, which was not found in the sole TSA, adenomas, or normal tissues. Genes of interest in this region were PDCH7 and SLIT2, and combined MSP/IHC analysis of these genes revealed significant loss of SLIT2 expression associated with promoter methylation of SLIT2. Loss of expression of SLIT2 by promoter hypermethylation and loss of heterozygosity events is significantly associated with serrated adenoma development, and SLIT2 may represent a epimutated tumour suppressor gene according to the Knudson "two hit" hypothesis.
Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Adenoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/patologia , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Ligação Genética , Humanos , Perda de Heterozigosidade , Masculino , Pessoa de Meia-IdadeRESUMO
Changes in DNA methylation, whether hypo- or hypermethylation, have been shown to be associated with the progression of colorectal cancer. Methylation changes substantially in the progression from normal mucosa to adenoma and to carcinoma. This phenomenon has not been studied extensively and studies have been restricted to individual CpG islands, rather than taking a whole-genome approach. We aimed to study genome-wide methylation changes in colorectal cancer. We obtained 10 fresh-frozen normal tissue-cancer sample pairs, and five fresh-frozen adenoma samples. These were run on the lllumina HumanMethylation27 whole-genome methylation analysis system. Differential methylation between normal tissue, adenoma and carcinoma was analysed using Bayesian regression modelling, gene set enrichment analysis (GSEA) and hierarchical clustering (HC). The highest-rated individual gene for differential methylation in carcinomas versus normal tissue and adenomas versus normal tissue was GRASP (padjusted = 1.59 × 10(-5) , BF = 12.62, padjusted = 1.68 × 10(-6) , BF = 14.53). The highest-rated gene when comparing carcinomas versus adenomas was ATM (padjusted = 2.0 × 10(-4) , BF = 10.17). Hierarchical clustering demonstrated poor clustering by the CIMP criteria for methylation. GSEA demonstrated methylation changes in the Netrin-DCC and SLIT-ROBO pathways. Widespread changes in DNA methylation are seen in the transition from adenoma to carcinoma. The finding that GRASP, which encodes the general receptor for phosphoinositide 1-associated scaffold protein, was differentially methylated in colorectal cancer is interesting. This may be a potential biomarker for colorectal cancer.