Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prev Med ; : 107974, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38677482

RESUMO

OBJECTIVE: To synthesize existing evidence on possible differential effects by sex and gender from two Cochrane reviews evaluating vaping and smoking transitions. METHODS: We screened included studies from two Cochrane reviews for studies reporting smoking outcomes based on gender or sex. The first review examines the effects of using e-cigarettes to help people quit smoking and includes randomized controlled trials and uncontrolled intervention studies published to July 2023. The second review aims to assess the evidence on the relationship between the use and availability of e-cigarettes and subsequent smoking in young people (aged 29 and younger) and includes quasi-experimental and cohort studies published to April 2023. Due to the paucity and heterogeneity of data, we report results narratively. RESULTS: 10 of 161 studies included in the two relevant reviews met our criteria. Only five reported analyzing whether observed effects or associations varied based on sex and/or gender. A further three provided relevant descriptive information, and two did not report overall outcomes regarding vaping and smoking transitions but did investigate whether these differed by sex/gender. Synthesized data were largely inconclusive, but there was some suggestion that vaping was more strongly associated with subsequent smoking in young males than females. No studies reported data on nonbinary participants. CONCLUSIONS: Despite plausible reasons why sex and gender may be moderators of vaping and smoking transitions, there is little evidence investigating this. Future studies of vaping and smoking transitions should conduct and report analyses investigating potential differences based on sex and gender.

2.
Cochrane Database Syst Rev ; 1: CD010216, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189560

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol by heating an e-liquid. People who smoke, healthcare providers and regulators want to know if ECs can help people quit smoking, and if they are safe to use for this purpose. This is a review update conducted as part of a living systematic review. OBJECTIVES: To examine the safety, tolerability and effectiveness of using electronic cigarettes (ECs) to help people who smoke tobacco achieve long-term smoking abstinence, in comparison to non-nicotine EC, other smoking cessation treatments and no treatment. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register to 1 February 2023, and Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 July 2023, and reference-checked and contacted study authors. SELECTION CRITERIA: We included trials in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention as these studies have the potential to provide further information on harms and longer-term use. Studies had to report an eligible outcome. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Critical outcomes were abstinence from smoking after at least six months, adverse events (AEs), and serious adverse events (SAEs). We used a fixed-effect Mantel-Haenszel model to calculate risk ratios (RRs) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data in pairwise and network meta-analyses (NMA). MAIN RESULTS: We included 88 completed studies (10 new to this update), representing 27,235 participants, of which 47 were randomized controlled trials (RCTs). Of the included studies, we rated ten (all but one contributing to our main comparisons) at low risk of bias overall, 58 at high risk overall (including all non-randomized studies), and the remainder at unclear risk. There is high certainty that nicotine EC increases quit rates compared to nicotine replacement therapy (NRT) (RR 1.59, 95% CI 1.29 to 1.93; I2 = 0%; 7 studies, 2544 participants). In absolute terms, this might translate to an additional four quitters per 100 (95% CI 2 to 6 more). There is moderate-certainty evidence (limited by imprecision) that the rate of occurrence of AEs is similar between groups (RR 1.03, 95% CI 0.91 to 1.17; I2 = 0%; 5 studies, 2052 participants). SAEs were rare, and there is insufficient evidence to determine whether rates differ between groups due to very serious imprecision (RR 1.20, 95% CI 0.90 to 1.60; I2 = 32%; 6 studies, 2761 participants; low-certainty evidence). There is moderate-certainty evidence, limited by imprecision, that nicotine EC increases quit rates compared to non-nicotine EC (RR 1.46, 95% CI 1.09 to 1.96; I2 = 4%; 6 studies, 1613 participants). In absolute terms, this might lead to an additional three quitters per 100 (95% CI 1 to 7 more). There is moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 5 studies, 1840 participants). There is insufficient evidence to determine whether rates of SAEs differ between groups, due to very serious imprecision (RR 1.00, 95% CI 0.56 to 1.79; I2 = 0%; 9 studies, 1412 participants; low-certainty evidence). Due to issues with risk of bias, there is low-certainty evidence that, compared to behavioural support only/no support, quit rates may be higher for participants randomized to nicotine EC (RR 1.88, 95% CI 1.56 to 2.25; I2 = 0%; 9 studies, 5024 participants). In absolute terms, this represents an additional four quitters per 100 (95% CI 2 to 5 more). There was some evidence that (non-serious) AEs may be more common in people randomized to nicotine EC (RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low-certainty evidence; 4 studies, 765 participants) and, again, insufficient evidence to determine whether rates of SAEs differed between groups (RR 0.89, 95% CI 0.59 to 1.34; I2 = 23%; 10 studies, 3263 participants; very low-certainty evidence). Results from the NMA were consistent with those from pairwise meta-analyses for all critical outcomes, and there was no indication of inconsistency within the networks. Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued EC use. Very few studies reported data on other outcomes or comparisons, hence, evidence for these is limited, with CIs often encompassing both clinically significant harm and benefit. AUTHORS' CONCLUSIONS: There is high-certainty evidence that ECs with nicotine increase quit rates compared to NRT and moderate-certainty evidence that they increase quit rates compared to ECs without nicotine. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain due to risk of bias inherent in the study design. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, with no difference in AEs between nicotine and non-nicotine ECs nor between nicotine ECs and NRT. Overall incidence of SAEs was low across all study arms. We did not detect evidence of serious harm from nicotine EC, but the longest follow-up was two years and the number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates. Further RCTs are underway. To ensure the review continues to provide up-to-date information to decision-makers, this review is a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Humanos , Nicotina/efeitos adversos , Terapia de Substituição da Nicotina , Ensaios Clínicos Controlados Aleatórios como Assunto , Metanálise em Rede
3.
Prev Med ; 165(Pt B): 107182, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35933001

RESUMO

Moderate certainty evidence supports use of nicotine electronic cigarettes to quit smoking combustible cigarettes. However, there is less certainty regarding how long people continue to use e-cigarettes after smoking cessation attempts. We set out to synthesise data on the proportion of people still using e-cigarettes or other study products at 6 months or longer in studies of e-cigarettes for smoking cessation. We updated Cochrane searches (November 2021). For the first time, we meta-analysed prevalence of continued e-cigarette use among individuals allocated to e-cigarette conditions, and among those individuals who had successfully quit smoking. We updated meta-analyses comparing proportions continuing product use among individuals allocated to use nicotine e-cigarettes and other treatments. We included 19 studies (n = 7787). The pooled prevalence of continued e-cigarette use at 6 months or longer was 54% (95% CI: 46% to 61%, I2 86%, N = 1482) in participants assigned to e-cigarette conditions. Of participants who had quit combustible cigarettes overall 70% were still using e-cigarettes at six months or longer (95% CI: 53% to 82%, I2 73%, N = 215). Heterogeneity in direction of effect precluded meta-analysis comparing long-term use of nicotine e-cigarettes with NRT. More people were using nicotine e-cigarettes at longest follow-up compared to non-nicotine e-cigarettes, but CIs included no difference (risk ratio 1.15, 95% CI: 0.94 to 1.41, n = 601). The levels of continued e-cigarette use observed may reflect the success of e-cigarettes as a quitting tool. Further research is needed to establish drivers of variation in and implications of continued use of e-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Humanos , Fumar/epidemiologia , Nicotina/efeitos adversos , Fumar Tabaco
4.
Cochrane Database Syst Rev ; 11: CD010216, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36384212

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol by heating an e-liquid. Some people who smoke use ECs to stop or reduce smoking, although some organizations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit smoking, and if they are safe to use for this purpose. This is a review update conducted as part of a living systematic review. OBJECTIVES: To examine the effectiveness, tolerability, and safety of using electronic cigarettes (ECs) to help people who smoke tobacco achieve long-term smoking abstinence. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 July 2022, and reference-checked and contacted study authors.  SELECTION CRITERIA: We included randomized controlled trials (RCTs) and randomized cross-over trials, in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. Studies had to report abstinence from cigarettes at six months or longer or data on safety markers at one week or longer, or both. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, adverse events (AEs), and serious adverse events (SAEs). Secondary outcomes included the proportion of people still using study product (EC or pharmacotherapy) at six or more months after randomization or starting EC use, changes in carbon monoxide (CO), blood pressure (BP), heart rate, arterial oxygen saturation, lung function, and levels of carcinogens or toxicants, or both. We used a fixed-effect Mantel-Haenszel model to calculate risk ratios (RRs) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data in meta-analyses. MAIN RESULTS: We included 78 completed studies, representing 22,052 participants, of which 40 were RCTs. Seventeen of the 78 included studies were new to this review update. Of the included studies, we rated ten (all but one contributing to our main comparisons) at low risk of bias overall, 50 at high risk overall (including all non-randomized studies), and the remainder at unclear risk. There was high certainty that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (RR 1.63, 95% CI 1.30 to 2.04; I2 = 10%; 6 studies, 2378 participants). In absolute terms, this might translate to an additional four quitters per 100 (95% CI 2 to 6). There was moderate-certainty evidence (limited by imprecision) that the rate of occurrence of AEs was similar between groups (RR 1.02, 95% CI 0.88 to 1.19; I2 = 0%; 4 studies, 1702 participants). SAEs were rare, but there was insufficient evidence to determine whether rates differed between groups due to very serious imprecision (RR 1.12, 95% CI 0.82 to 1.52; I2 = 34%; 5 studies, 2411 participants). There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.94, 95% CI 1.21 to 3.13; I2 = 0%; 5 studies, 1447 participants). In absolute terms, this might lead to an additional seven quitters per 100 (95% CI 2 to 16). There was moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 5 studies, 1840 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 1.00, 95% CI 0.56 to 1.79; I2 = 0%; 8 studies, 1272 participants). Compared to behavioural support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.66, 95% CI 1.52 to 4.65; I2 = 0%; 7 studies, 3126 participants). In absolute terms, this represents an additional two quitters per 100 (95% CI 1 to 3). However, this finding was of very low certainty, due to issues with imprecision and risk of bias. There was some evidence that (non-serious) AEs were more common in people randomized to nicotine EC (RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low certainty; 4 studies, 765 participants) and, again, insufficient evidence to determine whether rates of SAEs differed between groups (RR 1.03, 95% CI 0.54 to 1.97; I2 = 38%; 9 studies, 1993 participants).  Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued EC use. Very few studies reported data on other outcomes or comparisons, hence evidence for these is limited, with CIs often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS: There is high-certainty evidence that ECs with nicotine increase quit rates compared to NRT and moderate-certainty evidence that they increase quit rates compared to ECs without nicotine. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the effect size. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, with no difference in AEs between nicotine and non-nicotine ECs nor between nicotine ECs and NRT. Overall incidence of SAEs was low across all study arms. We did not detect evidence of serious harm from nicotine EC, but longest follow-up was two years and the number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates, but further RCTs are underway. To ensure the review continues to provide up-to-date information to decision-makers, this review is a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Humanos , Abandono do Hábito de Fumar/métodos , Dispositivos para o Abandono do Uso de Tabaco , Agonistas Nicotínicos/uso terapêutico , Revisões Sistemáticas como Assunto , Nicotina/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Cochrane Database Syst Rev ; 9: CD010216, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519354

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol formed by heating an e-liquid. Some people who smoke use ECs to stop or reduce smoking, but some organizations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit and if they are safe to use for this purpose. This is an update conducted as part of a living systematic review. OBJECTIVES: To examine the effectiveness, tolerability, and safety of using electronic cigarettes (ECs) to help people who smoke tobacco achieve long-term smoking abstinence. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 May 2021, and reference-checked and contacted study authors. We screened abstracts from the Society for Research on Nicotine and Tobacco (SRNT) 2021 Annual Meeting.   SELECTION CRITERIA: We included randomized controlled trials (RCTs) and randomized cross-over trials, in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. Studies had to report abstinence from cigarettes at six months or longer or data on safety markers at one week or longer, or both. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, adverse events (AEs), and serious adverse events (SAEs). Secondary outcomes included the proportion of people still using study product (EC or pharmacotherapy) at six or more months after randomization or starting EC use, changes in carbon monoxide (CO), blood pressure (BP), heart rate, arterial oxygen saturation, lung function, and levels of carcinogens or toxicants or both. We used a fixed-effect Mantel-Haenszel model to calculate risk ratios (RRs) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data in meta-analyses. MAIN RESULTS: We included 61 completed studies, representing 16,759 participants, of which 34 were RCTs. Five of the 61 included studies were new to this review update. Of the included studies, we rated seven (all contributing to our main comparisons) at low risk of bias overall, 42 at high risk overall (including all non-randomized studies), and the remainder at unclear risk. There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (risk ratio (RR) 1.53, 95% confidence interval (CI) 1.21 to 1.93; I2 = 0%; 4 studies, 1924 participants). In absolute terms, this might translate to an additional three quitters per 100 (95% CI 1 to 6). There was low-certainty evidence (limited by very serious imprecision) that the rate of occurrence of AEs was similar (RR 0.98, 95% CI 0.80 to 1.19; I2 = 0%; 2 studies, 485 participants). SAEs were rare, but there was insufficient evidence to determine whether rates differed between groups due to very serious imprecision (RR 1.30, 95% CI 0.89 to 1.90: I2 = 0; 4 studies, 1424 participants). There was moderate-certainty evidence, again limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.94, 95% CI 1.21 to 3.13; I2 = 0%; 5 studies, 1447 participants). In absolute terms, this might lead to an additional seven quitters per 100 (95% CI 2 to 16). There was moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 3 studies, 601 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 1.06, 95% CI 0.47 to 2.38; I2 = 0; 5 studies, 792 participants). Compared to behavioural support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.61, 95% CI 1.44 to 4.74; I2 = 0%; 6 studies, 2886 participants). In absolute terms this represents an additional six quitters per 100 (95% CI 2 to 15). However, this finding was of very low certainty, due to issues with imprecision and risk of bias. There was some evidence that non-serious AEs were more common in people randomized to nicotine EC (RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low certainty; 4 studies, 765 participants), and again, insufficient evidence to determine whether rates of SAEs differed between groups (RR 1.51, 95% CI 0.70 to 3.24; I2 = 0%; 7 studies, 1303 participants).  Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued use. Very few studies reported data on other outcomes or comparisons, hence evidence for these is limited, with CIs often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS: There is moderate-certainty evidence that ECs with nicotine increase quit rates compared to NRT and compared to ECs without nicotine. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the effect size. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, with no difference in AEs between nicotine and non-nicotine ECs. Overall incidence of SAEs was low across all study arms. We did not detect  evidence of harm from nicotine EC, but longest follow-up was two years and the  number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates, but further RCTs are underway. To ensure the review continues to provide up-to-date information to decision-makers, this review is now a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Humanos , Agonistas Nicotínicos , Revisões Sistemáticas como Assunto , Dispositivos para o Abandono do Uso de Tabaco
6.
Cochrane Database Syst Rev ; 4: CD010216, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33913154

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol formed by heating an e-liquid. Some people who smoke use ECs to stop or reduce smoking, but some organizations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit and if they are safe to use for this purpose. This is an update of a review first published in 2014. OBJECTIVES: To examine the effectiveness, tolerability, and safety of using electronic cigarettes (ECs) to help people who smoke achieve long-term smoking abstinence. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 February 2021, together with reference-checking and contact with study authors. SELECTION CRITERIA: We included randomized controlled trials (RCTs) and randomized cross-over trials in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. To be included, studies had to report abstinence from cigarettes at six months or longer and/or data on adverse events (AEs) or other markers of safety at one week or longer. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, adverse events (AEs), and serious adverse events (SAEs). Secondary outcomes included changes in carbon monoxide, blood pressure, heart rate, blood oxygen saturation, lung function, and levels of known carcinogens/toxicants. We used a fixed-effect Mantel-Haenszel model to calculate the risk ratio (RR) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data from these studies in meta-analyses. MAIN RESULTS: We included 56 completed studies, representing 12,804 participants, of which 29 were RCTs. Six of the 56 included studies were new to this review update. Of the included studies, we rated five (all contributing to our main comparisons) at low risk of bias overall, 41 at high risk overall (including the 25 non-randomized studies), and the remainder at unclear risk. There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (risk ratio (RR) 1.69, 95% confidence interval (CI) 1.25 to 2.27; I2 = 0%; 3 studies, 1498 participants). In absolute terms, this might translate to an additional four successful quitters per 100 (95% CI 2 to 8). There was low-certainty evidence (limited by very serious imprecision) that the rate of occurrence of AEs was similar) (RR 0.98, 95% CI 0.80 to 1.19; I2 = 0%; 2 studies, 485 participants). SAEs occurred rarely, with no evidence that their frequency differed between nicotine EC and NRT, but very serious imprecision led to low certainty in this finding (RR 1.37, 95% CI 0.77 to 2.41: I2 = n/a; 2 studies, 727 participants). There was moderate-certainty evidence, again limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.70, 95% CI 1.03 to 2.81; I2 = 0%; 4 studies, 1057 participants). In absolute terms, this might again lead to an additional four successful quitters per 100 (95% CI 0 to 11). These trials mainly used older EC with relatively low nicotine delivery. There was moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 3 studies, 601 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 0.60, 95% CI 0.15 to 2.44; I2 = n/a; 4 studies, 494 participants). Compared to behavioral support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.70, 95% CI 1.39 to 5.26; I2 = 0%; 5 studies, 2561 participants). In absolute terms this represents an increase of seven per 100 (95% CI 2 to 17). However, this finding was of very low certainty, due to issues with imprecision and risk of bias. There was no evidence that the rate of SAEs differed, but some evidence that non-serious AEs were more common in people randomized to nicotine EC (AEs: RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low certainty; 4 studies, 765 participants; SAEs: RR 1.17, 95% CI 0.33 to 4.09; I2 = 5%; 6 studies, 1011 participants, very low certainty). Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued use. Very few studies reported data on other outcomes or comparisons and hence evidence for these is limited, with confidence intervals often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS: There is moderate-certainty evidence that ECs with nicotine increase quit rates compared to ECs without nicotine and compared to NRT. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the size of effect, particularly when using modern EC products. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, though evidence indicated no difference in AEs between nicotine and non-nicotine ECs. Overall incidence of SAEs was low across all study arms. We did not detect any clear evidence of harm from nicotine EC, but longest follow-up was two years and the overall number of studies was small. The evidence is limited mainly by imprecision due to the small number of RCTs, often with low event rates. Further RCTs are underway. To ensure the review continues to provide up-to-date information, this review is now a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Agonistas Nicotínicos , Abandono do Hábito de Fumar/métodos , Prevenção do Hábito de Fumar , Viés , Monóxido de Carbono/análise , Estudos de Coortes , Humanos , Pessoa de Meia-Idade , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Avaliação de Resultados em Cuidados de Saúde , Viés de Publicação , Ensaios Clínicos Controlados Aleatórios como Assunto , Fumar/epidemiologia , Abandono do Hábito de Fumar/estatística & dados numéricos , Dispositivos para o Abandono do Uso de Tabaco , Vaping
7.
Cochrane Database Syst Rev ; 10: CD010216, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33052602

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol formed by heating an e-liquid. People who smoke report using ECs to stop or reduce smoking, but some organisations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit and if they are safe to use for this purpose. This review is an update of a review first published in 2014. OBJECTIVES: To evaluate the effect and safety of using electronic cigarettes (ECs) to help people who smoke achieve long-term smoking abstinence. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO for relevant records to January 2020, together with reference-checking and contact with study authors. SELECTION CRITERIA: We included randomized controlled trials (RCTs) and randomized cross-over trials in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. To be included, studies had to report abstinence from cigarettes at six months or longer and/or data on adverse events (AEs) or other markers of safety at one week or longer. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, AEs, and serious adverse events (SAEs). Secondary outcomes included changes in carbon monoxide, blood pressure, heart rate, blood oxygen saturation, lung function, and levels of known carcinogens/toxicants. We used a fixed-effect Mantel-Haenszel model to calculate the risk ratio (RR) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data from these studies in meta-analyses. MAIN RESULTS: We include 50 completed studies, representing 12,430 participants, of which 26 are RCTs. Thirty-five of the 50 included studies are new to this review update. Of the included studies, we rated four (all which contribute to our main comparisons) at low risk of bias overall, 37 at high risk overall (including the 24 non-randomized studies), and the remainder at unclear risk. There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (risk ratio (RR) 1.69, 95% confidence interval (CI) 1.25 to 2.27; I2 = 0%; 3 studies, 1498 participants). In absolute terms, this might translate to an additional four successful quitters per 100 (95% CI 2 to 8). There was low-certainty evidence (limited by very serious imprecision) of no difference in the rate of adverse events (AEs) (RR 0.98, 95% CI 0.80 to 1.19; I2 = 0%; 2 studies, 485 participants). SAEs occurred rarely, with no evidence that their frequency differed between nicotine EC and NRT, but very serious imprecision led to low certainty in this finding (RR 1.37, 95% CI 0.77 to 2.41: I2 = n/a; 2 studies, 727 participants). There was moderate-certainty evidence, again limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.71, 95% CI 1.00 to 2.92; I2 = 0%; 3 studies, 802 participants). In absolute terms, this might again lead to an additional four successful quitters per 100 (95% CI 0 to 12). These trials used EC with relatively low nicotine delivery. There was low-certainty evidence, limited by very serious imprecision, that there was no difference in the rate of AEs between these groups (RR 1.00, 95% CI 0.73 to 1.36; I2 = 0%; 2 studies, 346 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 0.25, 95% CI 0.03 to 2.19; I2 = n/a; 4 studies, 494 participants). Compared to behavioural support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.50, 95% CI 1.24 to 5.04; I2 = 0%; 4 studies, 2312 participants). In absolute terms this represents an increase of six per 100 (95% CI 1 to 14). However, this finding was very low-certainty, due to issues with imprecision and risk of bias. There was no evidence that the rate of SAEs varied, but some evidence that non-serious AEs were more common in people randomized to nicotine EC (AEs: RR 1.17, 95% CI 1.04 to 1.31; I2 = 28%; 3 studies, 516 participants; SAEs: RR 1.33, 95% CI 0.25 to 6.96; I2 = 17%; 5 studies, 842 participants). Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate over time with continued use. Very few studies reported data on other outcomes or comparisons and hence evidence for these is limited, with confidence intervals often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS: There is moderate-certainty evidence that ECs with nicotine increase quit rates compared to ECs without nicotine and compared to NRT. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the degree of effect, particularly when using modern EC products. Confidence intervals were wide for data on AEs, SAEs and other safety markers. Overall incidence of SAEs was low across all study arms. We did not detect any clear evidence of harm from nicotine EC, but longest follow-up was two years and the overall number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates. Further RCTs are underway. To ensure the review continues to provide up-to-date information for decision-makers, this review is now a living systematic review. We will run searches monthly from December 2020, with the review updated as relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Agonistas Nicotínicos , Abandono do Hábito de Fumar/métodos , Prevenção do Hábito de Fumar , Viés , Estudos de Coortes , Humanos , Pessoa de Meia-Idade , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Viés de Publicação , Ensaios Clínicos Controlados Aleatórios como Assunto , Fumar/epidemiologia , Abandono do Hábito de Fumar/estatística & dados numéricos , Dispositivos para o Abandono do Uso de Tabaco , Vaping
8.
Int J Obes (Lond) ; 43(10): 2066-2075, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30705390

RESUMO

BACKGROUND: The Brief Intervention for Weight Loss Trial enrolled 1882 consecutively attending primary care patients who were obese and participants were randomised to physicians opportunistically endorsing, offering, and facilitating a referral to a weight loss programme (support) or recommending weight loss (advice). After one year, the support group lost 1.4 kg more (95%CI 0.9 to 2.0): 2.4 kg versus 1.0 kg. We use a cohort simulation to predict effects on disease incidence, quality of life, and healthcare costs over 20 years. METHODS: Randomly sampling from the trial population, we created a virtual cohort of 20 million adults and assigned baseline morbidity. We applied the weight loss observed in the trial and assumed weight regain over four years. Using epidemiological data, we assigned the incidence of 12 weight-related diseases depending on baseline disease status, age, gender, body mass index. From a healthcare perspective, we calculated the quality adjusted life years (QALYs) accruing and calculated the incremental difference between trial arms in costs expended in delivering the intervention and healthcare costs accruing. We discounted future costs and benefits at 1.5% over 20 years. RESULTS: Compared with advice, the support intervention reduced the cumulative incidence of weight-related disease by 722/100,000 people, 0.33% of all weight-related disease. The incremental cost of support over advice was £2.01million/100,000. However, the support intervention reduced health service costs by £5.86 million/100,000 leading to a net saving of £3.85 million/100,000. The support intervention produced 992 QALYs/100,000 people relative to advice. CONCLUSIONS: A brief intervention in which physicians opportunistically endorse, offer, and facilitate a referral to a behavioural weight management service to patients with a BMI of at least 30 kg/m2 reduces healthcare costs and improves health more than advising weight loss.


Assuntos
Programas de Rastreamento , Obesidade/prevenção & controle , Atenção Primária à Saúde/economia , Programas de Redução de Peso , Adulto , Análise Custo-Benefício , Feminino , Inquéritos Epidemiológicos , Humanos , Masculino , Programas de Rastreamento/economia , Pessoa de Meia-Idade , Obesidade/economia , Qualidade de Vida , Redução de Peso , Programas de Redução de Peso/economia
10.
Lancet ; 388(10059): 2492-2500, 2016 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-27789061

RESUMO

BACKGROUND: Obesity is a common cause of non-communicable disease. Guidelines recommend that physicians screen and offer brief advice to motivate weight loss through referral to behavioural weight loss programmes. However, physicians rarely intervene and no trials have been done on the subject. We did this trial to establish whether physician brief intervention is acceptable and effective for reducing bodyweight in patients with obesity. METHODS: In this parallel, two-arm, randomised trial, patients who consulted 137 primary care physicians in England were screened for obesity. Individuals could be enrolled if they were aged at least 18 years, had a body-mass index of at least 30 kg/m2 (or at least 25 kg/m2 if of Asian ethnicity), and had a raised body fat percentage. At the end of the consultation, the physician randomly assigned participants (1:1) to one of two 30 s interventions. Randomisation was done via preprepared randomisation cards labelled with a code representing the allocation, which were placed in opaque sealed envelopes and given to physicians to open at the time of treatment assignment. In the active intervention, the physician offered referral to a weight management group (12 sessions of 1 h each, once per week) and, if the referral was accepted, the physician ensured the patient made an appointment and offered follow-up. In the control intervention, the physician advised the patient that their health would benefit from weight loss. The primary outcome was weight change at 12 months in the intention-to-treat population, which was assessed blinded to treatment allocation. We also assessed asked patients' about their feelings on discussing their weight when they have visited their general practitioner for other reasons. Given the nature of the intervention, we did not anticipate any adverse events in the usual sense, so safety outcomes were not assessed. This trial is registered with the ISRCTN Registry, number ISRCTN26563137. FINDINGS: Between June 4, 2013, and Dec 23, 2014, we screened 8403 patients, of whom 2728 (32%) were obese. Of these obese patients, 2256 (83%) agreed to participate and 1882 were eligible, enrolled, and included in the intention-to-treat analysis, with 940 individuals in the support group and 942 individuals in the advice group. 722 (77%) individuals assigned to the support intervention agreed to attend the weight management group and 379 (40%) of these individuals attended, compared with 82 (9%) participants who were allocated the advice intervention. In the entire study population, mean weight change at 12 months was 2·43 kg with the support intervention and 1·04 kg with the advice intervention, giving an adjusted difference of 1·43 kg (95% CI 0·89-1·97). The reactions of the patients to the general practitioners' brief interventions did not differ significantly between the study groups in terms of appropriateness (adjusted odds ratio 0·89, 95% CI 0·75-1·07, p=0·21) or helpfulness (1·05, 0·89-1·26, p=0·54); overall, four (<1%) patients thought their intervention was inappropriate and unhelpful and 1530 (81%) patients thought it was appropriate and helpful. INTERPRETATION: A behaviourally-informed, very brief, physician-delivered opportunistic intervention is acceptable to patients and an effective way to reduce population mean weight. FUNDING: The UK National Prevention Research Initiative.


Assuntos
Obesidade/terapia , Clínicos Gerais , Humanos , Atenção Primária à Saúde , Encaminhamento e Consulta
12.
Cochrane Database Syst Rev ; 10: CD005231, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734465

RESUMO

BACKGROUND: Although smoking cessation is currently the only guaranteed way to reduce the harm caused by tobacco smoking, a reasonable secondary tobacco control approach may be to try and reduce the harm from continued tobacco use amongst smokers unable or unwilling to quit. Possible approaches to reduce the exposure to toxins from smoking include reducing the amount of tobacco used, and using less toxic products, such as pharmaceutical, nicotine and potential reduced-exposure tobacco products (PREPs), as an alternative to cigarettes. OBJECTIVES: To assess the effects of interventions intended to reduce the harm to health of continued tobacco use, we considered the following specific questions: do interventions intended to reduce harm have an effect on long-term health status?; do they lead to a reduction in the number of cigarettes smoked?; do they have an effect on smoking abstinence?; do they have an effect on biomarkers of tobacco exposure?; and do they have an effect on biomarkers of damage caused by tobacco? SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group Trials Register (CRS) on the 21st October 2015, using free-text and MeSH terms for harm reduction, smoking reduction and cigarette reduction. SELECTION CRITERIA: Randomized or quasi-randomized controlled trials of interventions to reduce the amount smoked, or to reduce harm from smoking by means other than cessation. We include studies carried out in smokers with no immediate desire to quit all tobacco use. Primary outcomes were change in cigarette consumption, smoking cessation and any markers of damage or benefit to health, measured at least six months from the start of the intervention. DATA COLLECTION AND ANALYSIS: We assessed study eligibility for inclusion using standard Cochrane methods. We pooled trials with similar interventions and outcomes (> 50% reduction in cigarettes a day (CPD) and long-term smoking abstinence), using fixed-effect models. Where it was not possible to meta-analyse data, we summarized findings narratively. MAIN RESULTS: Twenty-four trials evaluated interventions to help those who smoke to cut down the amount smoked or to replace their regular cigarettes with PREPs, compared to placebo, brief intervention, or a comparison intervention. None of these trials directly tested whether harm reduction strategies reduced the harms to health caused by smoking. Most trials (14/24) tested nicotine replacement therapy (NRT) as an intervention to assist reduction. In a pooled analysis of eight trials, NRT significantly increased the likelihood of reducing CPD by at least 50% for people using nicotine gum or inhaler or a choice of product compared to placebo (risk ratio (RR) 1.75, 95% confidence interval (CI) 1.44 to 2.13; 3081 participants). Where average changes from baseline were compared for different measures, carbon monoxide (CO) and cotinine generally showed smaller reductions than CPD. Use of NRT versus placebo also significantly increased the likelihood of ultimately quitting smoking (RR 1.87, 95% CI 1.43 to 2.44; 8 trials, 3081 participants; quality of the evidence: low). Two trials comparing NRT and behavioural support to brief advice found a significant effect on reduction, but no significant effect on cessation. We found one trial investigating each of the following harm reduction intervention aids: bupropion, varenicline, electronic cigarettes, snus, plus another of nicotine patches to facilitate temporary abstinence. The evidence for all five intervention types was therefore imprecise, and it is unclear whether or not these aids increase the likelihood of smoking reduction or cessation. Two trials investigating two different types of behavioural advice and instructions on reducing CPD also provided imprecise evidence. Therefore, the evidence base for this comparison is inadequate to support the use of these types of behavioural advice to reduce smoking. Four studies of PREPs (cigarettes with reduced levels of tar, carbon and nicotine, and in one case delivered using an electronically-heated cigarette smoking system) showed some reduction in exposure to some toxicants, but it is unclear whether this would substantially alter the risk of harm. We judged the included studies to be generally at a low or unclear risk of bias; however, there were some ratings of high risk, due to a lack of blinding and the potential for detection bias. Using the GRADE system, we rated the overall quality of the evidence for our cessation outcomes as 'low' or 'very low', due to imprecision and indirectness. A 'low' grade means that further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. A 'very low' grade means we are very uncertain about the estimate. AUTHORS' CONCLUSIONS: People who do not wish to quit can be helped to cut down the number of cigarettes they smoke and to quit smoking in the long term, using NRT, despite original intentions not to do so. However, we rated the evidence contributing to the cessation outcome for NRT as 'low' by GRADE standards. There is a lack of evidence to support the use of other harm reduction aids to reduce the harm caused by continued tobacco smoking. This could simply be due to the lack of high-quality studies (our confidence in cessation outcomes for these aids is rated 'low' or 'very low' due to imprecision by GRADE standards), meaning that we may have missed a worthwhile effect, or due to a lack of effect on reduction or quit rates. It is therefore important that more high-quality RCTs are conducted, and that these also measure the long-term health effects of treatments.


Assuntos
Prevenção do Hábito de Fumar , Dispositivos para o Abandono do Uso de Tabaco , Tabagismo/terapia , Biomarcadores/sangue , Bupropiona/uso terapêutico , Monóxido de Carbono/sangue , Cotinina/sangue , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Nicotina/uso terapêutico , Agonistas Nicotínicos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Fumar/efeitos adversos , Fumar/sangue , Abandono do Hábito de Fumar/métodos
13.
Cochrane Database Syst Rev ; 9: CD010216, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27622384

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are electronic devices that heat a liquid into an aerosol for inhalation. The liquid usually comprises propylene glycol and glycerol, with or without nicotine and flavours, and stored in disposable or refillable cartridges or a reservoir. Since ECs appeared on the market in 2006 there has been a steady growth in sales. Smokers report using ECs to reduce risks of smoking, but some healthcare organizations, tobacco control advocacy groups and policy makers have been reluctant to encourage smokers to switch to ECs, citing lack of evidence of efficacy and safety. Smokers, healthcare providers and regulators are interested to know if these devices can help smokers quit and if they are safe to use for this purpose. This review is an update of a review first published in 2014. OBJECTIVES: To evaluate the safety and effect of using ECs to help people who smoke achieve long-term smoking abstinence. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO for relevant records from 2004 to January 2016, together with reference checking and contact with study authors. SELECTION CRITERIA: We included randomized controlled trials (RCTs) in which current smokers (motivated or unmotivated to quit) were randomized to EC or a control condition, and which measured abstinence rates at six months or longer. As the field of EC research is new, we also included cohort follow-up studies with at least six months follow-up. We included randomized cross-over trials, RCTs and cohort follow-up studies that included at least one week of EC use for assessment of adverse events (AEs). DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Our main outcome measure was abstinence from smoking after at least six months follow-up, and we used the most rigorous definition available (continuous, biochemically validated, longest follow-up). We used a fixed-effect Mantel-Haenszel model to calculate the risk ratio (RR) with a 95% confidence interval (CI) for each study, and where appropriate we pooled data from these studies in meta-analyses. MAIN RESULTS: Our searches identified over 1700 records, from which we include 24 completed studies (three RCTs, two of which were eligible for our cessation meta-analysis, and 21 cohort studies). Eleven of these studies are new for this version of the review. We identified 27 ongoing studies. Two RCTs compared EC with placebo (non-nicotine) EC, with a combined sample size of 662 participants. One trial included minimal telephone support and one recruited smokers not intending to quit, and both used early EC models with low nicotine content and poor battery life. We judged the RCTs to be at low risk of bias, but under the GRADE system we rated the overall quality of the evidence for our outcomes as 'low' or 'very low', because of imprecision due to the small number of trials. A 'low' grade means that further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. A 'very low' grade means we are very uncertain about the estimate. Participants using an EC were more likely to have abstained from smoking for at least six months compared with participants using placebo EC (RR 2.29, 95% CI 1.05 to 4.96; placebo 4% versus EC 9%; 2 studies; 662 participants. GRADE: low). The one study that compared EC to nicotine patch found no significant difference in six-month abstinence rates, but the confidence intervals do not rule out a clinically important difference (RR 1.26, 95% CI 0.68 to 2.34; 584 participants. GRADE: very low).Of the included studies, none reported serious adverse events considered related to EC use. The most frequently reported AEs were mouth and throat irritation, most commonly dissipating over time. One RCT provided data on the proportion of participants experiencing any adverse events. The proportion of participants in the study arms experiencing adverse events was similar (ECs vs placebo EC: RR 0.97, 95% CI 0.71 to 1.34 (298 participants); ECs vs patch: RR 0.99, 95% CI 0.81 to 1.22 (456 participants)). The second RCT reported no statistically significant difference in the frequency of AEs at three- or 12-month follow-up between the EC and placebo EC groups, and showed that in all groups the frequency of AEs (with the exception of throat irritation) decreased significantly over time. AUTHORS' CONCLUSIONS: There is evidence from two trials that ECs help smokers to stop smoking in the long term compared with placebo ECs. However, the small number of trials, low event rates and wide confidence intervals around the estimates mean that our confidence in the result is rated 'low' by GRADE standards. The lack of difference between the effect of ECs compared with nicotine patches found in one trial is uncertain for similar reasons. None of the included studies (short- to mid-term, up to two years) detected serious adverse events considered possibly related to EC use. The most commonly reported adverse effects were irritation of the mouth and throat. The long-term safety of ECs is unknown. In this update, we found a further 15 ongoing RCTs which appear eligible for this review.

16.
BMC Med ; 13: 257, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456865

RESUMO

BACKGROUND: Promoting and supporting smoking reduction in smokers with no immediate intention of stopping smoking is controversial given existing fears that this will deter cessation and that reduction itself may not improve health outcomes. DISCUSSION: Evidence shows that smokers who reduce the number of daily cigarettes smoked are more likely to attempt and actually achieve smoking cessation. Further, clinical trials have shown that nicotine replacement therapy benefits both reduction and cessation. Worldwide data suggests that 'non-medical' nicotine is more attractive to people who smoke, with electronic cigarettes now being widely used. Nevertheless, only one small trial has examined the use of electronic cigarettes to promote reduction, with direct evidence remaining inconclusive. It has been suggested that long-term reduced smoking may directly benefit health, although the benefits are small compared with cessation. SUMMARY: The combined data imply that smoking reduction is a promising intervention, particularly when supported by clean nicotine; however, the benefits are only observed when it leads to permanent cessation.


Assuntos
Abandono do Hábito de Fumar , Fumar/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Nicotina/uso terapêutico , Modelos de Riscos Proporcionais , Ensaios Clínicos Controlados Aleatórios como Assunto , Comportamento de Redução do Risco
17.
Cochrane Database Syst Rev ; (3): CD006936, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25726920

RESUMO

BACKGROUND: Motivational Interviewing (MI) is a directive patient-centred style of counselling, designed to help people to explore and resolve ambivalence about behaviour change. It was developed as a treatment for alcohol abuse, but may help people to a make a successful attempt to quit smoking. OBJECTIVES: To determine whether or not motivational interviewing (MI) promotes smoking cessation. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group Specialized Register for studies using the term motivat* NEAR2 (interview* OR enhanc* OR session* OR counsel* OR practi* OR behav*) in the title or abstract, or motivation* as a keyword. Date of the most recent search: August 2014. SELECTION CRITERIA: Randomized controlled trials in which motivational interviewing or its variants were offered to tobacco users to assist cessation. DATA COLLECTION AND ANALYSIS: We extracted data in duplicate. The main outcome measure was abstinence from smoking after at least six months follow-up. We used the most rigorous definition of abstinence in each trial, and biochemically validated rates where available. We counted participants lost to follow-up as continuing smoking or relapsed. We performed meta-analysis using a fixed-effect Mantel-Haenszel model. MAIN RESULTS: We identified 28 studies published between 1997 and 2014, involving over 16,000 participants. MI was conducted in one to six sessions, with the duration of each session ranging from 10 to 60 minutes. Interventions were delivered by primary care physicians, hospital clinicians, nurses or counsellors. Our meta-analysis of MI versus brief advice or usual care yielded a modest but significant increase in quitting (risk ratio (RR) 1.26; 95% confidence interval (CI) 1.16 to 1.36; 28 studies; N = 16,803). Subgroup analyses found that MI delivered by primary care physicians resulted in an RR of 3.49 (95% CI 1.53 to 7.94; 2 trials; N = 736). When delivered by counsellors the RR was smaller (1.25; 95% CI 1.15 to 1.63; 22 trials; N = 13,593) but MI still resulted in higher quit rates than brief advice or usual care. When we compared MI interventions conducted through shorter sessions (less than 20 minutes per session) to controls, this resulted in an RR of 1.69 (95% CI 1.34 to 2.12; 9 trials; N = 3651). Single-session treatments might increase the likelihood of quitting over multiple sessions, but both regimens produced positive outcomes. Evidence is unclear at present on the optimal number of follow-up calls.There was variation across the trials in treatment fidelity. All trials used some variant of motivational interviewing. Critical details in how it was modified for the particular study population, the training of therapists and the content of the counselling were sometimes lacking from trial reports.   AUTHORS' CONCLUSIONS: Motivational interviewing may assist people to quit smoking. However, the results should be interpreted with caution, due to variations in study quality, treatment fidelity, between-study heterogeneity and the possibility of publication or selective reporting bias.


Assuntos
Terapia Comportamental/métodos , Entrevista Motivacional/métodos , Fumar/psicologia , Fumar/terapia , Linhas Diretas , Humanos , Motivação , Ensaios Clínicos Controlados Aleatórios como Assunto , Abandono do Hábito de Fumar/psicologia
18.
Addiction ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937796

RESUMO

BACKGROUND AND AIMS: The use of e-cigarettes may influence later smoking uptake in young people. Evidence and gap maps (EGMs) are interactive on-line tools that display the evidence and gaps in a specific area of policy or research. The aim of this study was to map clusters and gaps in evidence exploring the relationship between e-cigarette use or availability and subsequent combustible tobacco use in people aged < 30 years. METHODS: We conducted an EGM of primary studies and systematic reviews. A framework and an interactive EGM was developed in consultation with an expert advisory group. A systematic search of five databases retrieved 9057 records, from which 134 studies were included. Systematic reviews were appraised using AMSTAR-2, and all included studies were coded into the EGM framework resulting in the interactive web-based EGM. A descriptive analysis of key characteristics of the identified evidence clusters and gaps resulted in this report. RESULTS: Studies were completed between 2015 and 2023, with the first systematic reviews being published in 2017. Most studies were conducted in western high-income countries, predominantly the United States. Cohort studies were the most frequently used study design. The evidence is clustered on e-cigarette use as an exposure, with an absolute gap identified for evidence looking into the availability of e-cigarettes and subsequent cessation of cigarette smoking. We also found little evidence analysing equity factors, and little exploring characteristics of e-cigarette devices. CONCLUSIONS: This evidence and gap map (EGM) offers a tool to explore the available evidence regarding the e-cigarette use/availability and later cigarette smoking in people under the age of 30 years at the time of the search. The majority of the 134 reports is from high-income countries, with an uneven geographic distribution. Most of the systematic reviews are of lower quality, suggesting the need for higher-quality reviews. The evidence is clustered around e-cigarette use as an exposure and subsequent frequency/intensity of current combustible tobacco use. Gaps in evidence focusing on e-cigarette availability, as well as on the influence of equity factors may warrant further research. This EGM can support funders and researchers in identifying future research priorities, while guiding practitioners and policymakers to the current evidence base.

19.
BMC Public Health ; 13: 1176, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24330656

RESUMO

BACKGROUND: Smokers attend preferentially to cigarettes and other smoking-related cues in the environment, in what is known as an attentional bias. There is evidence that attentional bias may contribute to craving and failure to stop smoking. Attentional retraining procedures have been used in laboratory studies to train smokers to reduce attentional bias, although these procedures have not been applied in smoking cessation programmes. This trial will examine the efficacy of multiple sessions of attentional retraining on attentional bias, craving, and abstinence in smokers attempting cessation. METHODS/DESIGN: This is a double-blind randomised controlled trial. Adult smokers attending a 7-session weekly stop smoking clinic will be randomised to either a modified visual probe task with attentional retraining or placebo training. Training will start 1 week prior to quit day and be given weekly for 5 sessions. Both groups will receive 21 mg transdermal nicotine patches for 8-12 weeks and withdrawal-orientated behavioural support for 7 sessions. Primary outcome measures are the change in attentional bias reaction time and urge to smoke on the Mood and Physical Symptoms Scale at 4 weeks post-quit. Secondary outcome measures include differences in withdrawal, time to first lapse and prolonged abstinence at 4 weeks post-quit, which will be biochemically validated at each clinic visit. Follow-up will take place at 8 weeks, 3 months and 6 months post-quit. DISCUSSION: This is the first randomised controlled trial of attentional retraining in smokers attempting cessation. This trial could provide proof of principle for a treatment aimed at a fundamental cause of addiction. TRIAL REGISTRATION: Current Controlled Trials: ISRCTN54375405.


Assuntos
Atenção/fisiologia , Terapia Cognitivo-Comportamental , Abandono do Hábito de Fumar/métodos , Prevenção do Hábito de Fumar , Fumar/psicologia , Adulto , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Projetos de Pesquisa , Resultado do Tratamento
20.
Addiction ; 117(5): 1427-1437, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34859526

RESUMO

BACKGROUND AND AIMS: Clinicians could promote e-cigarettes for harm reduction to people who smoke but cannot stop, but many clinicians feel uneasy doing so. In a randomized controlled trial (RCT), primary care clinicians offered free e-cigarettes and encouraged people with chronic diseases who were unwilling to stop smoking to switch to vaping. We interviewed clinicians and patients to understand how to adopt harm reduction in routine practice. DESIGN: Qualitative analysis nested within an RCT, comprising thematic analysis of semi-structured interviews with primary care clinicians who delivered the trial intervention, and patients who took part. SETTING: Primary care clinics in England. PARTICIPANTS/CASES: Twenty-one patients and 11 clinicians, purposively sampled from an RCT. MEASUREMENTS: We qualitatively explored patients' and clinicians' experiences of: being offered/offering an e-cigarette, past and current perceptions about e-cigarettes and applying a harm reduction approach. FINDINGS: Four themes captured clinicians' and patients' reported perspectives. These were: (1) concepts of safety/risk, with clinicians concerned about recommending a product with unknown long-term risks and patients preferring the known risks of cigarettes; (2) clinicians felt they were going out on a limb by offering these as though they were prescribing them, whereas patients did not share this view; (3) equating quitting with success, as both patients and clinicians conceptualized e-cigarettes as quitting aids; and (4) unchanged views, as clinicians reported that training did not change their existing views about e-cigarettes. These themes were united by the higher-order concept: 'The old and familiar meets the new and unknown', as a contradiction between this new approach and long-established methods underpinned these concerns. CONCLUSIONS: A qualitative analysis found barriers obstructing clinicians and patients from easily accepting e-cigarettes for harm reduction, rather than as aids to support smoking cessation: clinicians had difficulty reconciling harm reduction with their existing ethical models of practice, even following targeted training, and patients saw e-cigarettes as quitting aids.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Medicina Geral , Redução do Consumo de Tabaco , Vaping , Inglaterra , Humanos , Pesquisa Qualitativa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa