Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 56(10): 2771-2782, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375240

RESUMO

NOMAD is a spectrometer suite on board the ESA/Roscosmos ExoMars Trace Gas Orbiter, which launched in March 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel, allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at the day- and night-side, and during solar occultations. Here, in part 2 of a linked study, we describe the design, manufacturing, and testing of the ultraviolet and visible spectrometer channel called UVIS. We focus upon the optical design and working principle where two telescopes are coupled to a single grating spectrometer using a selector mechanism.

2.
Opt Lett ; 35(22): 3745-7, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21081983

RESUMO

We present a new optical deflection tomography method that takes advantage of the phase-shifting schlieren. The reconstruction algorithm is based on filtered backprojection. The instrument is well adapted for three-dimensional imaging of spatially sparse objects exhibiting large refractive index variations. It achieves a 35 µm resolution with a 3 mm depth of field. Its performance is illustrated with a bundle of fibers immersed in a matching index solution.

3.
Rev Sci Instrum ; 85(10): 101101, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25362364

RESUMO

As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.


Assuntos
Biologia/métodos , Meio Ambiente Extraterreno , Microscopia/métodos , Pesquisa , Animais , Humanos , Imagem Molecular
4.
Appl Opt ; 41(1): 27-37, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11900443

RESUMO

We present what we believe to be a new digital holographic imaging method that is able to determine simultaneously the distributions of intensity, phase, and polarization state at the surface of a specimen on the basis of a single image acquisition. Two reference waves with orthogonal polarization states interfere with the object wave to create a hologram that is recorded on a CCD camera. Two wave fronts, one for each perpendicular polarization state, are numerically reconstructed in intensity and phase. Combining the intensity and the phase distributions of these two wave fronts permits the determination of all the components of the Jones vector of the object-wave front. We show that this method can be used to image and measure the distribution of the polarization state at the surface of a specimen, and the obtained results indicate that precise quantitative measurements of the polarization state can be achieved. An application of the method to image the birefringence of a stressed polymethyl methacrylate sample is presented.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa