RESUMO
Postoperative cognitive dysfunction (POCD) is considered a severe complication after surgery among elderly patients. Toll-like receptor 3 (TLR3) has recently been reported to play an important role in hippocampus-dependent working memory. However, the role of TLR3 in the development of POCD remains unclear. In the current study, we hypothesized that increased extracellular RNAs (exRNAs) during anesthesia and surgical operation, especially double stranded RNAs (dsRNAs), would activate TLR3 signaling pathways and mediate POCD. Using a mouse model of POCD, 20-22â¯months wild-type (WT) mice were undergoing unilateral nephrectomy and increased TLR3 expression levels and co-localization with neuronal and microglial cells were found in the surgery group compared with the sham group. Compared with WT mice, TLR3 knockout (KO, -/-) mice had improved hippocampus-dependent memory and attenuated production of inflammatory cytokines and apoptosis. Increased exRNAs and/or co-localization with TLR3 were found in both in vitro and in vivo models. Of note, TLR3/dsRNA complex inhibitor administration reduced hippocampal dsRNA level and TLR3 expression, attenuated hippocampal inflammatory cytokines production and apoptosis, and thus improved hippocampus-dependent memory. Our results indicate that exRNAs, especially dsRNAs, present under stressful conditions may trigger TLR3 activation and initiate the downstream inflammatory and apoptotic signaling, and play a substantial role in the development of POCD.
Assuntos
Disfunção Cognitiva/genética , Complicações Cognitivas Pós-Operatórias/genética , Receptor 3 Toll-Like/metabolismo , Animais , Apoptose , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Transdução de Sinais/fisiologia , Receptor 3 Toll-Like/genéticaRESUMO
Activation of sigma receptors at delayed time points has been shown to decrease injury following ischemic stroke. The mixed σ1/σ2 receptor agonist, 5-ethoxy-2-[2-(morpholino)-ethylthio]benzimidazole (afobazole), provides superior long-term outcomes compared to other σ ligands in the rat middle cerebral artery occlusion (MCAO) stroke model. Experiments using the MCAO model were carried out to determine the molecular mechanism involved in the beneficial effects of afobazole. Administration of afobazole (3 mg/kg) at delayed time points post-stroke significantly increased the number of microglia and astrocytes detected in the ipsilateral hemisphere at 96 h post-surgery. Morphological analysis of the microglia indicated that a greater number of these cells were found in the ramified resting state in MCAO animals treated with afobazole relative to MCAO vehicle controls. Similarly, fewer reactive astrocytes were detected in the injured hemisphere of afobazole-treated animals. Both the enhanced survival and reduced activation of glial cells were abolished by co-application of either a σ1 (BD-1063) or a σ2 (SM-21) receptor antagonist with afobazole. To gain further insight into the mechanisms by which afobazole lessens stroke injury, we probed the brain sections for markers of neuroinflammation (tumor necrosis factor α) and nitrosative stress (S-nitrosocysteine). Data show that afobazole significantly reduces S-nitrosocysteine levels, but does not alter tumor necrosis factor α expression 96 h after an ischemic stroke. Taken together our data indicate that afobazole acting via both σ1 and σ2 receptors decreases stroke injury by enhancing glial cell survival, blocking ischemia-induced glial cell activation, and decreasing nitrosative stress.
Assuntos
Benzimidazóis/farmacologia , Isquemia Encefálica/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Morfolinas/farmacologia , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores sigma/agonistas , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/patologia , Butiratos/farmacologia , Cisteína/análogos & derivados , Cisteína/metabolismo , Infarto da Artéria Cerebral Média/patologia , Piperazinas/farmacologia , Ratos , S-Nitrosotióis/metabolismo , Acidente Vascular Cerebral/patologia , Tropanos/farmacologia , Receptor Sigma-1RESUMO
The spread of prion-like protein aggregates is a common driver of pathogenesis in various neurodegenerative diseases, including Alzheimer's disease (AD) and related Tauopathies. Tau pathologies exhibit a clear progressive spreading pattern that correlates with disease severity. Clinical observation combined with complementary experimental studies has shown that Tau preformed fibrils (PFF) are prion-like seeds that propagate pathology by entering cells and templating misfolding and aggregation of endogenous Tau. While several cell surface receptors of Tau are known, they are not specific to the fibrillar form of Tau. Moreover, the underlying cellular mechanisms of Tau PFF spreading remain poorly understood. Here, it is shown that the lymphocyte-activation gene 3 (Lag3) is a cell surface receptor that binds to PFF but not the monomer of Tau. Deletion of Lag3 or inhibition of Lag3 in primary cortical neurons significantly reduces the internalization of Tau PFF and subsequent Tau propagation and neuron-to-neuron transmission. Propagation of Tau pathology and behavioral deficits induced by injection of Tau PFF in the hippocampus and overlying cortex are attenuated in mice lacking Lag3 selectively in neurons. These results identify neuronal Lag3 as a receptor of pathologic Tau in the brainï¼and for AD and related Tauopathies, a therapeutic target.
Assuntos
Proteína do Gene 3 de Ativação de Linfócitos , Neurônios , Tauopatias , Proteínas tau , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Antígenos CD/metabolismo , Antígenos CD/genética , Modelos Animais de Doenças , Neurônios/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Tauopatias/metabolismo , Tauopatias/genética , Tauopatias/patologiaRESUMO
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the leading cause of senile dementia in the United States. Accumulation of amyloid-ß (Aß) and the effects of this peptide on microglial cells contribute greatly to the etiology of AD. Experiments were carried out to determine whether the pan-selective σ-receptor agonist afobazole can modulate microglial response to the cytotoxic Aß fragment, Aß25-35. Treatment with afobazole decreased microglial activation in response to Aß, as indicated by reduced membrane ruffling and cell migration. The effects of afobazole on Aß25-35-evoked migration were concentration dependent and consistent with σ-receptor activation. When afobazole was coapplied with either BD-1047 [N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide] or rimcazole, which are σ-1- and σ-2-selective antagonists, respectively, the inhibition of Aß25-35-induced migration by afobazole was reduced. Prolonged exposure of microglia to Aß25-35 resulted in glial cell death that was associated with increased expression of the proapoptotic protein Bax and the death protease caspase-3. Coapplication of afobazole with Aß25-35 decreased the number of cells expressing both Bax and caspase-3 and resulted in a concomitant enhancement in cell survival. Although afobazole inhibited activation of microglia cells by Aß25-35, it preserved normal functional responses in these cells after exposure to the amyloid peptide. Intracellular calcium increases induced by ATP were depressed in microglia after 24-hour exposure to Aß25-35. However, coincubation in afobazole returned these responses to near control levels. Therefore, stimulation of σ-1 and σ-2 receptors by afobazole prevents Aß25-35 activation of microglia and inhibits Aß25-35-associated cytotoxicity, suggesting that afobazole may be useful for AD therapeutics.
Assuntos
Peptídeos beta-Amiloides/toxicidade , Benzimidazóis/farmacologia , Microglia/efeitos dos fármacos , Morfolinas/farmacologia , Fragmentos de Peptídeos/toxicidade , Receptores sigma/agonistas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/biossíntese , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Imuno-Histoquímica , Masculino , Microglia/metabolismo , Microglia/patologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores sigma/antagonistas & inibidoresRESUMO
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a continual decline of cognitive function. No therapy has been identified that can effectively halt or reverse its progression. One hallmark of AD is accumulation of the amyloid-ß peptide (Aß), which alone induces neuronal injury via various mechanisms. Data presented here demonstrate that prolonged exposure (1-24 hours) of rat cortical neurons to Aß25-35 results in an increase in basal intracellular Ca(2+) concentration ([Ca(2+)]i), and that coincubation with the compound afobazole inhibits these [Ca(2+)]i increases. The effect of afobazole on [Ca(2+)]i is due to activation of σ-1 receptors but could not be mimicked by a second pan-selective σ receptor agonist, 1,3-di-o-tolylguanidine (DTG). Afobazole was also found to lessen nitric oxide (NO) production in response to Aß25-35 application but did not affect elevations in reactive oxygen species elicited by the Aß fragment. The reductions in [Ca(2+)]i and NO perturbation produced by afobazole were associated with a decrease in neuronal cell death, whereas DTG failed to enhance cell survival. Examining the molecular mechanisms involved in the increased neuronal survival demonstrates that afobazole incubation results in lower expression of the proapoptotic protein Bax and the death protease caspase-3, while at the same time increasing expression of the antiapoptotic protein, Bcl-2. Given the importance of Aß neurotoxicity in AD etiology, the findings reported here suggest that afobazole may be an effective AD therapeutic agent. Furthermore, σ-1 receptors may represent a useful target for AD treatment, although not all σ ligands appear to be equally beneficial.
Assuntos
Peptídeos beta-Amiloides/toxicidade , Benzimidazóis/farmacologia , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Receptores sigma/agonistas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Benzimidazóis/uso terapêutico , Cálcio/metabolismo , Técnicas de Cultura de Células , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Imuno-Histoquímica , Masculino , Morfolinas/uso terapêutico , Neurônios/metabolismo , Neurônios/patologia , Óxido Nítrico/biossíntese , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores sigma/antagonistas & inibidores , Receptor Sigma-1RESUMO
Currently, the only Food and Drug Administration-approved treatment of acute stroke is recombinant tissue plasminogen activator, which must be administered within 6 hours after stroke onset. The pan-selective σ-receptor agonist N,N'-di-o-tolyl-guanidine (o-DTG) has been shown to reduce infarct volume in rats after middle cerebral artery occlusion, even when administered 24 hours after stroke. DTG derivatives were synthesized to develop novel compounds with greater potency than o-DTG. Fluorometric Ca(2+) imaging was used in cultured cortical neurons to screen compounds for their capacity to reduce ischemia- and acidosis-evoked cytosolic Ca(2+) overload, which has been linked to stroke-induced neurodegeneration. In both assays, migration of the methyl moiety produced no significant differences, but removal of the group increased potency of the compound for inhibiting acidosis-induced [Ca(2+)](i) elevations. Chloro and bromo substitution of the methyl moiety in the meta and para positions increased potency by ≤160%, but fluoro substitutions had no effect. The most potent DTG derivative tested was N,N'-di-p-bromo-phenyl-guanidine (p-BrDPhG), which had an IC(50) of 2.2 µM in the ischemia assay, compared with 74.7 µM for o-DTG. Microglial migration assays also showed that p-BrDPhG is more potent than o-DTG in this marker for microglial activation, which is also linked to neuronal injury after stroke. Radioligand binding studies showed that p-BrDPhG is a pan-selective σ ligand. Experiments using the σ-1 receptor-selective antagonist 1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine dihydrochloride (BD-1063) demonstrated that p-BrDPhG blocks Ca(2+) overload via σ-1 receptor activation. The study identified four compounds that may be more effective than o-DTG for the treatment of ischemic stroke at delayed time points.
Assuntos
Guanidina/análogos & derivados , Guanidina/uso terapêutico , Parassimpatomiméticos/uso terapêutico , Receptores sigma/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidose/induzido quimicamente , Acidose/metabolismo , Animais , Ligação Competitiva/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Técnicas In Vitro , Ligantes , Microglia/metabolismo , Conformação Molecular , Ratos , Receptores sigma/antagonistas & inibidores , Relação Estrutura-AtividadeRESUMO
Alzheimer's disease (AD) is the leading cause of dementia worldwide, but there are limited therapeutic options and no current cure. While the involvement of microglia in AD has been highly appreciated, the role of other innate and adaptive immune cells remains largely unknown, partly due to their scarcity and heterogeneity. This study aimed to study non-microglial immune cells in wild type and AD-transgenic mouse brains across different ages. Our results uncovered the presence of a unique CD8+ T cell population that were selectively increased in aging AD mouse brains, here referred to as "disease-associated T cells (DATs)". These DATs were found to express an elevated tissue-resident memory and Type I interferon-responsive gene signature. Further analysis of aged AD mouse brains showed that these CD8+ T cells were not present in peripheral or meningeal tissues. Preventing CD8+ T cell development in AD-transgenic mice via genetic deletion of beta-2 microglobulin ( B2m ) led to a reduction of amyloid-ß plaque formation in aged mice, and improved memory in AD-transgenic mice as early as four months of age. The integration of transcriptomic and epigenomic profiles at the single-cell level revealed potential transcription factors that reshape the regulomes of CD8+ T cells. These findings highlight a critical role for DATs in the progression of AD and provide a new avenue for treatment.
RESUMO
The spread of prion-like protein aggregates is believed to be a common driver of pathogenesis in many neurodegenerative diseases. Accumulated tangles of filamentous Tau protein are considered pathogenic lesions of Alzheimer's disease (AD) and related Tauopathies, including progressive supranuclear palsy, and corticobasal degeneration. Tau pathologies in these illnesses exhibits a clear progressive and hierarchical spreading pattern that correlates with disease severity1,2. Clinical observation combined with complementary experimental studies3,4 have shown that Tau preformed fibrils (PFF) are prion-like seeds that propagate pathology by entering cells and templating misfolding and aggregation of endogenous Tau. While several receptors of Tau are known, they are not specific to the fibrillar form of Tau. Moreover, the underlying cellular mechanisms of Tau PFF spreading remains poorly understood. Here, we show that the lymphocyte-activation gene 3 (Lag3) is a cell surface receptor that binds to PFF, but not monomer, of Tau. Deletion of Lag3 or inhibition of Lag3 in primary cortical neurons significantly reduces the internalization of Tau PFF and subsequent Tau propagation and neuron-to-neuron transmission. Propagation of Tau pathology and behavioral deficits induced by injection of Tau PFF in the hippocampus and overlying cortex are attenuated in mice lacking Lag3 selectively in neurons. Our results identify neuronal Lag3 as a receptor of pathologic Tau in the brain, and for AD and related Tauopathies a therapeutic target.
RESUMO
Microglial cells play a critical role in the neuroinflammatory response that accompanies various diseases of the central nervous system, such as ischemic stroke, and ATP is a major signaling molecule regulating the response of these cells to these pathophysiological conditions. Experiments were carried out to determine the effects of afobazole on microglial function and to identify the molecular mechanisms by which afobazole affects microglial cells. Afobazole was found to inhibit migration of microglial cells in response to ATP and UTP chemoattraction in a concentration-dependent manner. Inhibition of either σ-1 or σ-2 receptors decreased the effects of afobazole on microglia. In addition to inhibiting microglial cell migration, activation of σ receptors by afobazole decreased intracellular calcium elevation produced by focal application of ATP and UTP in isolated microglial cells. Furthermore, afobazole blocked membrane currents elicited by rapid application of ATP in microglial cells. Taken together, our data indicate that afobazole inhibits microglial response to P2Y and P2X purinergic receptor activation by functioning as a pan-selective σ-receptor agonist. In addition to modulating response to purinergic receptor activation, the effects of afobazole on microglial survival during in vitro ischemia were assessed. Application of afobazole during in vitro ischemia decreased microglial cell death during the ischemic episode and after a 24-h recovery period. Moreover, when afobazole was only applied after the ischemic episode, a significant enhancement in cell survival was still observed. Thus, afobazole acts via σ receptors to decrease microglial response to ATP and provides cytoprotection during and after ischemia.
Assuntos
Ansiolíticos/farmacologia , Benzimidazóis/farmacologia , Microglia/efeitos dos fármacos , Morfolinas/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores sigma/agonistas , Trifosfato de Adenosina/biossíntese , Animais , Isquemia Encefálica/patologia , Butiratos/farmacologia , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Etilenodiaminas/farmacologia , Feminino , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Piperazinas/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley , Tropanos/farmacologia , Uridina Trifosfato/biossíntese , Receptor Sigma-1RESUMO
Afobazole is an anxiolytic medication that has been previously shown to be neuroprotective both in vitro and in vivo. However, the mechanism(s) by which afobazole can enhance neuronal survival remain poorly understood. Experiments were carried out to determine whether afobazole can decrease intracellular calcium overload associated with ischemia and acidosis and whether the effects of afobazole are mediated via interaction of the compound with σ receptors. Fluorometric Ca(2+) imaging was used to resolve how application of afobazole affects intracellular Ca(2+) handling in cortical neurons. Application of afobazole significantly depressed, in a concentration-dependent and reversible manner, the intracellular Ca(2+) overload resulting from in vitro ischemia and acidosis. The IC(50) for afobazole inhibition of ischemia-evoked intracellular Ca(2+) overload was considerably less than that for the inhibition of [Ca(2+)](i) increases induced by acidosis. However, afobazole maximally inhibited only 70% of the ischemia-evoked intracellular Ca(2+) overload but effectively abolished intracellular Ca(2+) increases produced by acidosis. The effects of afobazole on ischemia- and acidosis-induced intracellular Ca(2+) dysregulation were inhibited by preincubating the neurons in the irreversible, pan-selective σ-receptor antagonist, metaphit. Moreover, the effects of afobazole on intracellular Ca(2+) increases triggered by acidosis and ischemia were blocked by the selective σ-1-receptor antagonists, BD 1063 and BD 1047, respectively. Experiments examining the effects of afobazole on neuronal survival in response to ischemia showed that afobazole was neuroprotective. Taken together, these data suggest that afobazole regulates intracellular Ca(2+) overload during ischemia and acidosis via activation of σ-1 receptors. This mechanism is probably responsible for afobazole-mediated neuroprotection.
Assuntos
Acidose/metabolismo , Ansiolíticos/farmacologia , Benzimidazóis/farmacologia , Isquemia Encefálica/metabolismo , Morfolinas/farmacologia , Neurônios/metabolismo , Receptores sigma/agonistas , Acidose/patologia , Animais , Isquemia Encefálica/patologia , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Etilenodiaminas/farmacologia , Feminino , Guanidinas/farmacologia , Indicadores e Reagentes , L-Lactato Desidrogenase/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Entorpecentes/farmacologia , Neurônios/patologia , Técnicas de Patch-Clamp , Pentazocina/farmacologia , Fenciclidina/análogos & derivados , Fenciclidina/farmacologia , Piperazinas/farmacologia , Gravidez , Ratos , Receptores sigma/antagonistas & inibidores , Receptor Sigma-1RESUMO
Stroke continues to be a leading cause of death and serious long-term disability. The lack of therapeutic options for treating stroke at delayed time points (≥6 h post-stroke) remains a challenge. The sigma receptor agonist, afobazole, an anxiolytic used clinically in Russia, has been shown to reduce neuronal and glial cell injury following ischemia and acidosis; both of which have been shown to play important roles following an ischemic stroke. However, the mechanism(s) responsible for this cytoprotection remain unknown. Experiments were carried out on isolated microglia from neonatal rats and cortical neurons from embryonic rats to gain further insight into these mechanisms. Prolonged exposure to in vitro ischemia resulted in microglial cell death, which was associated with increased expression of the pro-apoptotic protein, Bax, the death protease, caspase-3, and reduced expression in the anti-apoptotic protein Bcl-2. Incubation of cells with afobazole during ischemia decreased the number of microglia expressing both Bax and caspase-3, and increased cells expressing Bcl-2, which resulted in a concomitant enhancement in cell survival. In similar experiments, incubation of neurons under in vitro ischemic conditions resulted in higher expression of Bax and caspase-3, while at the same time expression of Bcl-2 was decreased. However, unlike observations made in microglial cells, afobazole was unable to modulate the expression of these apoptotic proteins, but a reduction in neuronal death was still noted. The functional state of surviving neurons was assessed by measuring metabolic activity, resting membrane potential, and responses to membrane depolarizations. Results showed that these neurons maintained membrane potential but had low metabolic activity and were unresponsive to membrane depolarizations. However, while these neurons were not fully functional, there was significant protection by afobazole against long-term ischemia-induced cell death. Thus, the effects of sigma receptor activation on microglial and neuronal responses to ischemia differ significantly.
RESUMO
Postoperative cognitive dysfunction (POCD) is a significant complication of surgery, particularly in elderly patients. Emerging researches showed that long non-coding RNA (lncRNA) may play a vital role in the pathogenesis of POCD. Here we aimed to identify potential key lncRNAs involved in the development of POCD. LncRNA and mRNA expression profiles in hippocampal tissues from POCD and control mice were analyzed by microarray assay. Gene ontology (GO) and KEGG pathway enrichment analyses were conducted to probe the functions of dysregulated genes. Then, important factors of the mainly affected biological processes were measured in the hippocampus. Correlated coding-non-coding co-expression (CNC) networks were constructed. Finally, the potential key pairs of lncRNA and target mRNA implicated in POCD were probed. Our data showed that 868 differentially expressed lncRNAs and 690 differentially expressed mRNAs were identified in total. GO and KEGG analyses indicated that the differentially expressed genes were mainly associated with inflammatory and apoptotic signaling pathways. Surgery-induced inflammatory cytokines and apoptosis were significantly increased in hippocampal tissues of aged mice. In CNC network analysis, we found that LncRNA uc009qbj.1 was positively correlated with apoptosis-associated gene Vrk2 level. LncRNA ENSMUST00000174338 correlated positively with expression of the inflammation and apoptosis-associated gene Smad7. LncRNA NONMMUT00000123687 mediated gene expression by binding the inflammation-regulated transcription factor Meis2. Our results suggested that these potential key lncRNAs and mRNAs may play a crucial role in the development of POCD through mediating neuronal inflammation or apoptosis.
RESUMO
The AAA+ adenosine triphosphatase (ATPase) Thorase plays a critical role in controlling synaptic plasticity by regulating the expression of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Bidirectional sequencing of exons of ATAD1, the gene encoding Thorase, in a cohort of patients with schizophrenia and healthy controls revealed rare Thorase variants. These variants caused defects in glutamatergic signaling by impairing AMPAR internalization and recycling in mouse primary cortical neurons. This contributed to increased surface expression of the AMPAR subunit GluA2 and enhanced synaptic transmission. Heterozygous Thorase-deficient mice engineered to express these Thorase variants showed altered synaptic transmission and several behavioral deficits compared to heterozygous Thorase-deficient mice expressing wild-type Thorase. These behavioral impairments were rescued by the competitive AMPAR antagonist Perampanel, a U.S. Food and Drug Administration-approved drug. These findings suggest that Perampanel may be useful for treating disorders involving compromised AMPAR-mediated glutamatergic neurotransmission.
Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Variação Genética , Glutamatos/metabolismo , Piridonas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Comportamento Animal , Células Cultivadas , Córtex Cerebral/patologia , Endocitose/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Heterozigoto , Humanos , Memória/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nitrilas , Multimerização Proteica , Comportamento SocialRESUMO
In this work, we describe the fabrication and working of a modular microsystem that recapitulates the functions of the "Neurovascular Unit". The microdevice comprised a vertical stack of a poly(dimethylsiloxane) (PDMS) neural parenchymal chamber separated by a vascular channel via a microporous polycarbonate (PC) membrane. The neural chamber housed a mixture of neurons (~4%), astrocytes (~95%), and microglia (~1%). The vascular channel was lined with a layer of rat brain microvascular endothelial cell line (RBE4). Cellular components in the neural chamber and vascular channel showed viability (>90%). The neural cells fired inhibitory as well as excitatory potentials following 10 days of culture. The endothelial cells showed diluted-acetylated low density lipoprotein (dil-a-LDL) uptake, expressed von Willebrand factor (vWF) and zonula occludens (ZO-1) tight junctions, and showed decreased Alexafluor™-conjugated dextran leakage across their barriers significantly compared with controls (p < 0.05). When the vascular layer was stimulated with TNF-α for 6 h, about 75% of resident microglia and astrocytes on the neural side were activated significantly (p < 0.05 compared to controls) recapitulating tissue-mimetic responses resembling neuroinflammation. The impact of this microsystem lies in the fact that this biomimetic neurovascular platform might not only be harnessed for obtaining mechanistic insights for neurodegenerative disorders, but could also serve as a potential screening tool for central nervous system (CNS) therapeutics in toxicology and neuroinfectious diseases.