Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 24(12): 564-575, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37654251

RESUMO

The co-chaperone BAG3 is a hub for a variety of cellular pathways via its multiple domains and its interaction with chaperones of the HSP70 family or small HSPs. During aging and under cellular stress conditions in particular, BAG3, together with molecular chaperones, ensures the sequestration of aggregated or aggregation-prone ubiquitinated proteins to the autophagic-lysosomal system via ubiquitin receptors. Accumulating evidence for BAG3-mediated selective autophagy independent of cargo ubiquitination led to analyses predicting a direct interaction of BAG3 with LC3 proteins. Phylogenetically, BAG3 comprises several highly conserved potential LIRs, LC3-interacting regions, which might allow for the direct targeting of BAG3 including its cargo to autophagosomes and drive their autophagic degradation. Based on pull-down experiments, peptide arrays and proximity ligation assays, our results provide evidence of an interaction of BAG3 with LC3B. In addition, we could demonstrate that disabling all predicted LIRs abolished the inducibility of a colocalization of BAG3 with LC3B-positive structures and resulted in a substantial decrease of BAG3 levels within purified native autophagic vesicles compared with wild-type BAG3. These results suggest an autophagic targeting of BAG3 via interaction with LC3B. Therefore, we conclude that, in addition to being a key co-chaperone to HSP70, BAG3 may also act as a cargo receptor for client proteins, which would significantly extend the role of BAG3 in selective macroautophagy and protein quality control.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Chaperonas Moleculares/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Transporte
2.
EMBO Rep ; 23(12): e53065, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36215690

RESUMO

Autophagy is responsible for clearance of an extensive portfolio of cargoes, which are sequestered into vesicles, called autophagosomes, and are delivered to lysosomes for degradation. The pathway is highly dynamic and responsive to several stress conditions. However, the phospholipid composition and protein contents of human autophagosomes under changing autophagy rates are elusive so far. Here, we introduce an antibody-based FACS-mediated approach for the isolation of native autophagic vesicles and ensured the quality of the preparations. Employing quantitative lipidomics, we analyze phospholipids present within human autophagic vesicles purified upon basal autophagy, starvation, and proteasome inhibition. Importantly, besides phosphoglycerides, we identify sphingomyelin within autophagic vesicles and show that the phospholipid composition is unaffected by the different conditions. Employing quantitative proteomics, we obtain cargo profiles of autophagic vesicles isolated upon the different treatment paradigms. Interestingly, starvation shows only subtle effects, while proteasome inhibition results in the enhanced presence of ubiquitin-proteasome pathway factors within autophagic vesicles. Thus, here we present a powerful method for the isolation of native autophagic vesicles, which enabled profound phospholipid and cargo analyses.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteômica , Humanos , Autofagia , Fosfolipídeos
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782467

RESUMO

Nondegradative ubiquitin chains attached to specific targets via Lysine 63 (K63) residues have emerged to play a fundamental role in synaptic function. The K63-specific deubiquitinase CYLD has been widely studied in immune cells and lately also in neurons. To better understand if CYLD plays a role in brain and synapse homeostasis, we analyzed the behavioral profile of CYLD-deficient mice. We found that the loss of CYLD results in major autism-like phenotypes including impaired social communication, increased repetitive behavior, and cognitive dysfunction. Furthermore, the absence of CYLD leads to a reduction in hippocampal network excitability, long-term potentiation, and pyramidal neuron spine numbers. By providing evidence that CYLD can modulate mechanistic target of rapamycin (mTOR) signaling and autophagy at the synapse, we propose that synaptic K63-linked ubiquitination processes could be fundamental in understanding the pathomechanisms underlying autism spectrum disorder.


Assuntos
Autofagia/fisiologia , Hipocampo/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Transtorno do Espectro Autista , Transtorno Autístico , Enzima Desubiquitinante CYLD , Feminino , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Sinapses/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
4.
EMBO J ; 38(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886048

RESUMO

Neurodegenerative diseases are characterized by the accumulation of misfolded proteins in the brain. Insights into protein quality control mechanisms to prevent neuronal dysfunction and cell death are crucial in developing causal therapies. Here, we report that various disease-associated protein aggregates are modified by the linear ubiquitin chain assembly complex (LUBAC). HOIP, the catalytic component of LUBAC, is recruited to misfolded Huntingtin in a p97/VCP-dependent manner, resulting in the assembly of linear polyubiquitin. As a consequence, the interactive surface of misfolded Huntingtin species is shielded from unwanted interactions, for example with the low complexity sequence domain-containing transcription factor Sp1, and proteasomal degradation of misfolded Huntingtin is facilitated. Notably, all three core LUBAC components are transcriptionally regulated by Sp1, linking defective LUBAC expression to Huntington's disease. In support of a protective activity of linear ubiquitination, silencing of OTULIN, a deubiquitinase with unique specificity for linear polyubiquitin, decreases proteotoxicity, whereas silencing of HOIP has the opposite effect. These findings identify linear ubiquitination as a protein quality control mechanism and hence a novel target for disease-modifying strategies in proteinopathies.


Assuntos
Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Poliubiquitina/metabolismo , Processamento de Proteína Pós-Traducional , Fator de Transcrição Sp1/metabolismo , Proteína com Valosina/metabolismo , Adulto , Idoso , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , NF-kappa B/genética , NF-kappa B/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Fator de Transcrição Sp1/genética , Ubiquitinação , Proteína com Valosina/genética
5.
J Biol Chem ; 297(5): 101263, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600886

RESUMO

Autophagy is a major cellular quality control system responsible for the degradation of proteins and organelles in response to stress and damage to maintain homeostasis. Ubiquitination of autophagy-related proteins or regulatory components is important for the precise control of autophagy pathways. Here, we show that the deubiquitinase ubiquitin-specific protease 11 (USP11) restricts autophagy and that KO of USP11 in mammalian cells results in elevated autophagic flux. We also demonstrate that depletion of the USP11 homolog H34C03.2 in Caenorhabditis elegans triggers hyperactivation of autophagy and protects the animals against human amyloid-ß peptide 42 aggregation-induced paralysis. USP11 coprecipitated with autophagy-specific class III phosphatidylinositol 3-kinase complex I and limited its interaction with nuclear receptor-binding factor 2, thus decreasing lipid kinase activity of class III phosphatidylinositol 3-kinase complex I and subsequent recruitment of effectors such as WD-repeat domain phosphoinositide-interacting proteins to the autophagosomal membrane. Accordingly, more WD-repeat domain phosphoinositide-interacting protein 2 puncta accumulated in USP11 KO cells. In addition, USP11 interacts with and stabilizes the serine/threonine kinase mechanistic target of rapamycin, thereby further contributing to the regulation of autophagy induction. Taken together, our data suggested that USP11 impinges on the autophagy pathway at multiple sites and that inhibiting USP11 alleviates symptoms of proteotoxicity, which is a major hallmark of neurodegenerative diseases.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Tioléster Hidrolases/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Tioléster Hidrolases/genética
6.
J Cell Biochem ; 123(1): 102-114, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33942360

RESUMO

The B-cell CLL 2-associated athanogene (BAG) protein family in general and BAG3, in particular, are pivotal elements of cellular protein homeostasis, with BAG3 playing a major role in macroautophagy. In particular, in the contexts of senescence and degeneration, BAG3 has exhibited an essential role often related to its capabilities to organize and remove aggregated proteins. Exciting studies in different species ranging from human, murine, zebrafish, and plant samples have delivered vital insights into BAG3s' (and other BAG proteins') functions and their regulations. However, so far no studies have addressed neither BAG3's evolution nor its phylogenetic position in the BAG family.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Fungos/metabolismo , Plantas/metabolismo , Proteostase/fisiologia , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Autofagia/fisiologia , Senescência Celular/fisiologia , Evolução Molecular , Humanos , Filogenia , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Proteólise
7.
Cell Mol Life Sci ; 78(2): 645-660, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32322926

RESUMO

The cellular protein homeostasis (proteostasis) network responds effectively to insults. In a functional screen in C. elegans, we recently identified the gene receptor-mediated endocytosis 8 (rme-8; human ortholog: DNAJC13) as a component of the proteostasis network. Accumulation of aggregation-prone proteins, such as amyloid-ß 42 (Aß), α-synuclein, or mutant Cu/Zn-superoxide dismutase (SOD1), were aggravated upon the knockdown of rme-8/DNAJC13 in C. elegans and in human cell lines, respectively. DNAJC13 is involved in endosomal protein trafficking and associated with the retromer and the WASH complex. As both complexes have been linked to autophagy, we investigated the role of DNAJC13 in this degradative pathway. In knockdown and overexpression experiments, DNAJC13 acts as a positive modulator of autophagy. In contrast, the overexpression of the Parkinson's disease-associated mutant DNAJC13(N855S) did not enhance autophagy. Reduced DNAJC13 levels affected ATG9A localization at and its transport from the recycling endosome. As a consequence, ATG9A co-localization at LC3B-positive puncta under steady-state and autophagy-induced conditions is impaired. These data demonstrate a novel function of RME-8/DNAJC13 in cellular homeostasis by modulating ATG9A trafficking and autophagy.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Chaperonas Moleculares/metabolismo , Proteostase , Animais , Caenorhabditis elegans/citologia , Células HEK293 , Células HeLa , Humanos , Agregados Proteicos
8.
J Cell Biochem ; 122(6): 602-611, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33522032

RESUMO

Recent advances in the yeast Saccharomyces cerevisiae and higher eukaryotes have been increasingly connecting lipid droplet (LD) dynamics to the regulation of autophagy. In this review we will discuss implications that connect LD de novo synthesis and LD mobilization to autophagy and how autophagy is regulated by these mechanisms. Elucidating these connections might pose a chance to further understand autophagy induction and membrane biogenesis for the growing autophagosome under different conditions. Increasing our understanding of these mechanisms might provide a chance to understand several conditions that might be related to LD dysregulation and, possibly, as a consequence of this, dysregulation of autophagy.


Assuntos
Autofagia/fisiologia , Gotículas Lipídicas/metabolismo , Animais , Humanos , Lipólise/fisiologia , Saccharomyces cerevisiae/metabolismo
9.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322510

RESUMO

Autophagy (cellular self-consumption) is a crucial adaptation mechanism during cellular stress conditions. This study aimed to examine how this important process is regulated in human periodontal ligament (PDL) fibroblasts by mechanical and inflammatory stress conditions and whether the mammalian target of rapamycin (mTOR) signaling pathway is involved. Autophagy was quantified by flow cytometry. Qualitative protein phosphorylation profiling of the mTOR pathway was carried out. Effects of mTOR regulation were assessed by quantification of important synthesis product collagen 1, cell proliferation and cell death with real-time PCR and flow cytometry. Autophagy as a response to mechanical or inflammatory treatment in PDL fibroblasts was dose and time dependent. In general, autophagy was induced by stress stimulation. Phosphorylation analysis of mTOR showed regulatory influences of mechanical and inflammatory stimulation on crucial target proteins. Regulation of mTOR was also detectable via changes in protein synthesis and cell proliferation. Physiological pressure had cell-protective effects (p = 0.025), whereas overload increased cell death (p = 0.003), which was also promoted in long-term inflammatory treatment (p < 0.001). Our data provide novel insights about autophagy regulation by mechanical and inflammatory stress conditions in human PDL fibroblasts. Our results suggest some involvement of the mTOR pathway in autophagy and cell fate regulation under the named conditions.


Assuntos
Autofagia/fisiologia , Estresse Mecânico , Morte Celular/fisiologia , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Transdução de Sinais/fisiologia
10.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234472

RESUMO

Traumatic brain injury (TBI) can lead to impaired cognition and memory consolidation. The acute phase (24-48 h) after TBI is often characterized by neural dysfunction in the vicinity of the lesion, but also in remote areas like the contralateral hemisphere. Protein homeostasis is crucial for synaptic long-term plasticity including the protein degradation systems, proteasome and autophagy. Still, little is known about the acute effects of TBI on synaptic long-term plasticity and protein degradation. Thus, we investigated TBI in a controlled cortical impact (CCI) model in the motor and somatosensory cortex of mice ex vivo-in vitro. Late long-term potentiation (l-LTP) was induced by theta-burst stimulation in acute brain slices after survival times of 1-2 days. Protein levels for the plasticity related protein calcium/calmodulin-dependent protein kinase II (CaMKII) was quantified by Western blots, and the protein degradation activity by enzymatical assays. We observed missing maintenance of l-LTP in the ipsilateral hemisphere, however not in the contralateral hemisphere after TBI. Protein levels of CaMKII were not changed but, interestingly, the protein degradation revealed bidirectional changes with a reduced proteasome activity and an increased autophagic flux in the ipsilateral hemisphere. Finally, LTP recordings in the presence of pharmacologically modified protein degradation systems also led to an impaired synaptic plasticity: bath-applied MG132, a proteasome inhibitor, or rapamycin, an activator of autophagy, both administered during theta burst stimulation, blocked the induction of LTP. These data indicate that alterations in protein degradation pathways likely contribute to cognitive deficits in the acute phase after TBI, which could be interesting for future approaches towards neuroprotective treatments early after traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Potenciação de Longa Duração , Complexo de Endopeptidases do Proteassoma/metabolismo , Córtex Somatossensorial/fisiopatologia , Animais , Autofagia , Lesões Encefálicas Traumáticas/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Proteólise , Córtex Somatossensorial/metabolismo
11.
J Neurochem ; 143(4): 394-395, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29052848

RESUMO

For 25 years, the amyloid cascade hypothesis, based on the finding that mutations in the amyloid precursor protein are closely linked to familial forms of Alzheimer's disease (AD), dominated the research on this disease. Recent failures of clinical anti-amyloidogenic trials, however, substantially support the reasoning (i) that the pathomechanisms that trigger familial AD, namely the generation, aggregation, and deposition of amyloid beta, cannot necessarily be extrapolated to sporadic cases and (ii) that amyloid beta represents a prominent histopathological feature in AD but not its exclusive causative factor. In autumn 2016, the Volkswagen Foundation hosted the Herrenhausen Symposium 'Beyond Amyloid - Widening the View on Alzheimer's Disease' in Hannover, Germany, to bring together current knowledge on cellular and molecular processes that contribute to AD pathogenesis independent of or alongside with the amyloid biochemistry. The following mini review series was authored by key speakers at the meeting, and highlights some of the mechanisms potentially involved in AD etiology that provide alternative viewpoints and mechanisms beyond the amyloid cascade hypothesis. This article is part of the series "Beyond Amyloid".


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides , Congressos como Assunto , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/diagnóstico , Amiloidose/metabolismo , Amiloidose/terapia , Animais , Humanos
12.
Biochem Biophys Res Commun ; 486(3): 738-743, 2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342870

RESUMO

Macroautophagy is a conserved degradative pathway and its deterioration is linked to disturbances in cellular proteostasis and multiple diseases. Here, we show that the RAB GTPase RAB18 modulates autophagy in primary human fibroblasts. The knockdown of RAB18 results in a decreased autophagic activity, while its overexpression enhances the degradative pathway. Importantly, this function of RAB18 is dependent on RAB3GAP1 and RAB3GAP2, which might act as RAB GEFs and stimulate the activity of the RAB GTPase. Moreover, the knockdown of RAB18 deteriorates proteostasis and results in the intracellular accumulation of ubiquitinated degradation-prone proteins. Thus, the RAB GTPase RAB18 is a positive modulator of autophagy and is relevant for the maintenance of cellular proteostasis.


Assuntos
Autofagia/genética , Fibroblastos/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/genética , Fibroblastos/citologia , Regulação da Expressão Gênica , Genes Reporter , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Cultura Primária de Células , Estabilidade Proteica , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/metabolismo , Proteína Vermelha Fluorescente
13.
Mol Cell Proteomics ; 14(1): 1-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24997994

RESUMO

Senescence is a prominent solid tumor response to therapy in which cells avoid apoptosis and instead enter into prolonged cell cycle arrest. We applied a quantitative proteomics screen to identify signals that lead to therapy-induced senescence and discovered that Bcl2-associated athanogene 3 (Bag3) is up-regulated after adriamycin treatment in MCF7 cells. Bag3 is a member of the BAG family of co-chaperones that interacts with Hsp70. Bag3 also regulates major cell-signaling pathways. Mass spectrometry analysis of the Bag3 Complex revealed a novel interaction between Bag3 and Major Vault Protein (MVP). Silencing of Bag3 or MVP shifts the cellular response to adriamycin to favor apoptosis. We demonstrate that Bag3 and MVP contribute to apoptosis resistance in therapy-induced senescence by increasing the level of activation of extracellular signal-regulated kinase1/2 (ERK1/2). Silencing of either Bag3 or MVP decreased ERK1/2 activation and promoted apoptosis in adriamycin-treated cells. An increase in nuclear accumulation of MVP is observed during therapy-induced senescence and the shift in MVP subcellular localization is Bag3-dependent. We propose a model in which Bag3 binds to MVP and facilitates MVP accumulation in the nucleus, which sustains ERK1/2 activation. We confirmed that silencing of Bag3 or MVP shifts the response toward apoptosis and regulates ERK1/2 activation in a panel of diverse breast cancer cell lines. This study highlights Bag3-MVP as an important complex that regulates a potent prosurvival signaling pathway and contributes to chemotherapy resistance in breast cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Senescência Celular/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Antibióticos Antineoplásicos/farmacologia , Apoptose/fisiologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Proteômica , Transdução de Sinais
16.
Int J Mol Sci ; 18(1)2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28042827

RESUMO

The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co-factor CHIP (C-terminus of HSP70-inteacting protein, STUB1) ubiquitinates chaperone substrates and directs proteins to the cellular degradation systems. The activity of CHIP is regulated by two co-chaperones, BAG2 and HSPBP1, which are potent inhibitors of the E3 ubiquitin ligase activity. Here, we examined the functional correlation of HSP72, CHIP, and BAG2, employing human primary fibroblasts. We showed that HSP72 is a substrate of CHIP and that BAG2 efficiently prevented the ubiquitination of HSP72 in young cells as well as aged cells. Aging is associated with a decline in proteostasis and we observed increased protein levels of CHIP as well as BAG2 in senescent cells. Interestingly, the ubiquitination of HSP72 was strongly reduced during aging, which revealed that BAG2 functionally counteracted the increased levels of CHIP. Interestingly, HSPBP1 protein levels were down-regulated during aging. The data presented here demonstrates that the co-chaperone BAG2 influences HSP72 protein levels and is an important modulator of the ubiquitination activity of CHIP in young as well as aged cells.


Assuntos
Proteínas de Choque Térmico HSP72/metabolismo , Chaperonas Moleculares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Senescência Celular/genética , Proteínas de Choque Térmico HSP72/genética , Humanos , Immunoblotting , Chaperonas Moleculares/genética , Interferência de RNA , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
17.
J Neurochem ; 133(3): 352-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25393523

RESUMO

Oxidative stress is an early hallmark in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. However, the critical biochemical effector mechanisms of oxidative neurotoxicity have remained surprisingly elusive. In screening various peroxides and potential substrates of oxidation for their effect on neuronal survival, we observed that intramembrane compounds were significantly more active than aqueous or amphiphilic compounds. To better understand this result, we synthesized a series of competitive and site-specific membrane protein oxidation inhibitors termed aminoacyllipids, whose structures were designed on the basis of amino acids frequently found at the protein-lipid interface of synaptic membrane proteins. Investigating the aminoacyllipids in primary neuronal culture, we found that the targeted protection of transmembrane tyrosine and tryptophan residues was sufficient to prevent neurotoxicity evoked by hydroperoxides, kainic acid, glutathione-depleting drugs, and certain amyloidogenic peptides, but ineffective against non-oxidative inducers of apoptosis such as sphingosine or Akt kinase inhibitors. Thus, the oxidative component of different neurotoxins appears to converge on neuronal membrane proteins, irrespective of the primary mechanism of cellular oxidant generation. Our results indicate the existence of a one-electron redox cycle based on membrane protein aromatic surface amino acids, whose disturbance or overload leads to excessive membrane protein oxidation and neuronal death. Membrane proteins have rarely been investigated as potential victims of oxidative stress in the context of neurodegeneration. This study provides evidence that excessive one-electron oxidation of membrane proteins from within the lipid bilayer, depicted in the graphic, is a functionally decisive step toward neuronal cell death in response to different toxins.


Assuntos
Proteínas de Membrana/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Proteínas de Membrana/química , Oxirredução , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley
18.
J Cell Sci ; 126(Pt 2): 580-92, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23178947

RESUMO

Aggregation of misfolded proteins and the associated loss of neurons are considered a hallmark of numerous neurodegenerative diseases. Optineurin is present in protein inclusions observed in various neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Huntington's disease, Alzheimer's disease, Parkinson's disease, Creutzfeld-Jacob disease and Pick's disease. Optineurin deletion mutations have also been described in ALS patients. However, the role of optineurin in mechanisms of protein aggregation remains unclear. In this report, we demonstrate that optineurin recognizes various protein aggregates via its C-terminal coiled-coil domain in a ubiquitin-independent manner. We also show that optineurin depletion significantly increases protein aggregation in HeLa cells and that morpholino-silencing of the optineurin ortholog in zebrafish causes the motor axonopathy phenotype similar to a zebrafish model of ALS. A more severe phenotype is observed when optineurin is depleted in zebrafish carrying ALS mutations. Furthermore, TANK1 binding kinase 1 (TBK1) is colocalized with optineurin on protein aggregates and is important in clearance of protein aggregates through the autophagy-lysosome pathway. TBK1 phosphorylates optineurin at serine 177 and regulates its ability to interact with autophagy modifiers. This study provides evidence for a ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates as well as additional relevance for TBK1 as an upstream regulator of the autophagic pathway.


Assuntos
Doenças Neurodegenerativas/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Ubiquitina/metabolismo , Animais , Autofagia/fisiologia , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Células HeLa , Humanos , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neurodegenerativas/genética , Fosforilação , Ligação Proteica , Peixe-Zebra
19.
J Neurochem ; 131(4): 484-97, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25066892

RESUMO

Cannabinoid Receptor 1 (CB1) has been initially described as the receptor for Delta-9-Tetrahydrocannabinol in the central nervous system (CNS), mediating retrograde synaptic signaling of the endocannabinoid system. Beside its expression in various CNS regions, CB1 is ubiquituous in peripheral tissues, where it mediates, among other activities, the cell's energy homeostasis. We sought to examine the role of CB1 in the context of the evolutionarily conserved autophagic machinery, a main constituent of the regulation of the intracellular energy status. Manipulating CB1 by siRNA knockdown in mammalian cells caused an elevated autophagic flux, while the expression of autophagy-related genes remained unaltered. Pharmacological inhibition of CB1 activity using Rimonabant likewise caused an elevated autophagic flux, which was independent of the mammalian target of rapamycin complex 1, a major switch in the control of canonical autophagy. In addition, knocking down coiled-coil myosin-like BCL2-interacting protein 1, the key-protein of the second canonical autophagy control complex, was insufficient to reduce the elevated autophagic flux induced by Rimonabant. Interestingly, lysosomal activity is not altered, suggesting a specific effect of CB1 on the regulation of autophagic flux. We conclude that CB1 activity affects the autophagic flux independently of the two major canonic regulation complexes controlling autophagic vesicle formation. Regulation of the autophagic flux in certain physiological situations such as an imbalance of nutrient supply as well as in pathological stages is of major importance for neuronal and non-neuronal cells. CB1 (Cannabinoid receptor 1) affects the metabolism of cells directly. In this study, we provide evidence that CB1 signaling has a direct influence on autophagy which might help the cell to find the right adjustment to different metabolic states and CB1 activity exerts its modulatory action independent of the canonical mTOR- and BECLIN1-complexes regulating autophagy.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Nucleotídeos de Adenina/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1 , Benzoxazinas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Macrolídeos/farmacologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Naftalenos/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/genética , Rimonabanto , Serina-Treonina Quinases TOR/genética
20.
Neurobiol Dis ; 62: 479-88, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24200866

RESUMO

Mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) are responsible for a subset of amyotrophic lateral sclerosis cases presumably by the acquisition of as yet unknown toxic properties. Additional overexpression of wild-type SOD1 in mutant SOD1 transgenic mice did not improve but rather accelerated the disease course. Recently, it was documented that the presence of wild-type SOD1 (SOD(WT)) reduced the aggregation propensity of mutant SOD1 by the formation of heterodimers between mutant and SOD1(WT) and that these heterodimers displayed at least a similar toxicity in cellular and animal models. In this study we investigated the biochemical and biophysical properties of obligate SOD1 dimers that were connected by a peptide linker. Circular dichroism spectra indicate an increased number of unstructured residues in SOD1 mutants. However, SOD1(WT) stabilized the folding of heterodimers compared to mutant homodimers as evidenced by an increase in resistance against proteolytic degradation. Heterodimerization also reduced the affinity of mutant SOD1 to antibodies detecting misfolded SOD1. In addition, the formation of obligate dimers resulted in a detection of substantial dismutase activity even of the relatively labile SOD1(G85R) mutant. These data indicate that soluble, dismutase-active SOD1 dimers might contribute at least partially to mutant SOD1 toxicity.


Assuntos
Superóxido Dismutase/química , Células HEK293 , Humanos , Mutação , Multimerização Proteica , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa