Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2317305121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709919

RESUMO

Infanticide and adoption have been attributed to sexual selection, where an individual later reproduces with the parent whose offspring it killed or adopted. While sexually selected infanticide is well known, evidence for sexually selected adoption is anecdotal. We report on both behaviors at 346 nests over 27 y in green-rumped parrotlets (Forpus passerinus) in Venezuela. Parrotlets are monogamous with long-term pair bonds, exhibit a strongly male-biased adult sex ratio, and nest in cavities that are in short supply, creating intense competition for nest sites and mates. Infanticide attacks occurred at 256 nests in two distinct contexts: 1) Attacks were primarily committed by nonbreeding pairs (69%) attempting to evict parents from the cavity. Infanticide attacks per nest were positively correlated with population size and evicting pairs never adopted abandoned offspring. Competition for limited nest sites was a primary cause of eviction-driven infanticide, and 2) attacks occurred less frequently at nests where one mate died (31%), was perpetrated primarily by stepparents of both sexes, and was independent of population size. Thus, within a single species and mating system, infanticide occurred in multiple contexts due to multiple drivers. Nevertheless, 48% of stepparents of both sexes adopted offspring, and another 23% of stepfathers exhibited both infanticide and long-term care. Stepfathers were often young males who subsequently nested with widows, reaching earlier ages of first breeding than competitors and demonstrating sexually selected adoption. Adoption and infanticide conferred similar fitness benefits to stepfathers and appeared to be equivalent strategies driven by limited breeding opportunities, male-biased sex ratios, and long-term monogamy.


Assuntos
Papagaios , Animais , Masculino , Feminino , Venezuela , Papagaios/fisiologia , Comportamento de Nidação/fisiologia , Razão de Masculinidade , Comportamento Sexual Animal/fisiologia , Seleção Sexual
2.
Glob Chang Biol ; 30(1): e17019, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37987241

RESUMO

Correlative species distribution models are widely used to quantify past shifts in ranges or communities, and to predict future outcomes under ongoing global change. Practitioners confront a wide range of potentially plausible models for ecological dynamics, but most specific applications only consider a narrow set. Here, we clarify that certain model structures can embed restrictive assumptions about key sources of forecast uncertainty into an analysis. To evaluate forecast uncertainties and our ability to explain community change, we fit and compared 39 candidate multi- or joint species occupancy models to avian incidence data collected at 320 sites across California during the early 20th century and resurveyed a century later. We found massive (>20,000 LOOIC) differences in within-time information criterion across models. Poorer fitting models omitting multivariate random effects predicted less variation in species richness changes and smaller contemporary communities, with considerable variation in predicted spatial patterns in richness changes across models. The top models suggested avian environmental associations changed across time, contemporary avian occupancy was influenced by previous site-specific occupancy states, and that both latent site variables and species associations with these variables also varied over time. Collectively, our results recapitulate that simplified model assumptions not only impact predictive fit but may mask important sources of forecast uncertainty and mischaracterize the current state of system understanding when seeking to describe or project community responses to global change. We recommend that researchers seeking to make long-term forecasts prioritize characterizing forecast uncertainty over seeking to present a single best guess. To do so reliably, we urge practitioners to employ models capable of characterizing the key sources of forecast uncertainty, where predictors, parameters and random effects may vary over time or further interact with previous occurrence states.


Assuntos
Mudança Climática , Clima , Animais , Incerteza , Aves/fisiologia , Previsões
3.
J Hered ; 114(4): 436-443, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37119047

RESUMO

The black rail, Laterallus jamaicensis, is one of the most secretive and poorly understood birds in the Americas. Two of its five subspecies breed in North America: the Eastern black rail (L. j. jamaicensis), found primarily in the southern and mid-Atlantic states, and the California black rail (L. j. coturniculus), inhabiting California and Arizona, are recognized across the highly disjunct distribution. Population declines, due primarily to wetland loss and degradation, have resulted in conservation status listings for both subspecies. To help advance understanding of the phylogeography, biology, and ecology of this elusive species, we report the first reference genome assembly for the black rail, produced as part of the California Conservation Genomics Project (CCGP). We produced a de novo genome assembly using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology with an estimated sequencing error rate of 0.182%. The assembly consists of 964 scaffolds spanning 1.39 Gb, with a contig N50 of 7.4 Mb, scaffold N50 of 21.4 Mb, largest contig of 44.8 Mb, and largest scaffold of 101.2 Mb. The assembly has a high BUSCO completeness score of 96.8% and represents the first genome assembly available for the genus Laterallus. This genome assembly can help resolve questions about the complex evolutionary history of rails, assess black rail vagility and population connectivity, estimate effective population sizes, and evaluate the potential of rails for adaptive evolution in the face of growing threats from climate change, habitat loss and fragmentation, and disease.


Assuntos
Aves , Genoma , Animais , Aves/genética , Ecossistema , Genômica , Ecologia , Cromossomos
4.
J Hered ; 114(4): 428-435, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37105531

RESUMO

The Virginia rail, Rallus limicola, is a member of the family Rallidae, which also includes many other species of secretive and poorly studied wetland birds. It is recognized as a single species throughout its broad distribution in North America where it is exploited as a game bird, often with generous harvest limits, despite a lack of systematic population surveys and evidence of declines in many areas due to wetland loss and degradation. To help advance understanding of the phylogeography, biology, and ecology of this elusive species, we report the first reference genome assembly for the Virginia rail, produced as part of the California Conservation Genomics Project (CCGP). We produced a de novo genome assembly using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology with an estimated sequencing error rate of 0.191%. The assembly consists of 1,102 scaffolds spanning 1.39 Gb, with a contig N50 of 11.0 Mb, scaffold N50 of 25.3 Mb, largest contig of 45 Mb, and largest scaffold of 128.4 Mb. It has a high BUSCO completeness score of 96.9% and represents the first genome assembly available for the genus Rallus. This genome assembly will help resolve questions about the complex evolutionary history of rails and evaluate the potential of rails for adaptive evolution in the face of growing threats from climate change and habitat loss and fragmentation. It will also provide a valuable resource for rail conservation efforts by quantifying Virginia rail vagility, population connectivity, and effective population sizes.


Assuntos
Genoma , Genômica , Animais , Virginia , Cromossomos , Aves/genética
5.
Ecol Lett ; 25(11): 2372-2383, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209497

RESUMO

Two controversial tenets of metapopulation biology are whether patch quality and the surrounding matrix are more important to turnover (colonisation and extinction) than biogeography (patch area and isolation) and whether factors governing turnover during equilibrium also dominate nonequilibrium dynamics. We tested both tenets using 18 years of surveys for two secretive wetland birds, black and Virginia rails, during (1) a period of equilibrium with stable occupancy and (2) after drought and arrival of West Nile Virus (WNV), which resulted in WNV infections in rails, increased extinction and decreased colonisation probabilities modified by WNV, nonequilibrium dynamics for both species and occupancy decline for black rails. Area (primarily) and isolation (secondarily) drove turnover during both stable and unstable metapopulation dynamics, greatly exceeding the effects of patch quality and matrix conditions. Moreover, slopes between turnover and patch characteristics changed little between equilibrium and nonequilibrium, confirming the overriding influences of biogeographic factors on turnover.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Dinâmica Populacional , Aves , Áreas Alagadas
6.
Proc Biol Sci ; 289(1976): 20220592, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35642373

RESUMO

Prelinguistic babbling is a critical phase in infant language development and is best understood in temperate songbirds where it occurs primarily in males at reproductive maturity and is modulated by sex steroids. Parrots of both sexes are icons of tropical vocal plasticity, but vocal babbling is unreported in this group and whether the endocrine system is involved is unknown. Here we show that vocal babbling is widespread in a wild parrot population in Venezuela, ensues in both sexes during the nestling stage, occurs amidst a captive audience of mixed-aged siblings, and is modulated by corticosteroids. Spectrographic analysis and machine learning found phoneme diversity and combinatorial capacity increased precipitously for the first week, thereafter, crystalizing into a smaller repertoire, consistent with the selective attrition model of language development. Corticosterone-treated nestlings differed from unmanipulated birds and sham controls in several acoustic properties and crystallized a larger repertoire post-treatment. Our findings indicate babbling occurs during an early life-history stage in which corticosteroids help catalyse the transition from a universal learning programme to one finely tuned for the prevailing ecological environment, a potentially convergent scenario in human prelinguistic development.


Assuntos
Papagaios , Idoso , Animais , Desenvolvimento Infantil , Sistema Endócrino , Feminino , Humanos , Idioma , Masculino
7.
J Exp Biol ; 225(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132993

RESUMO

Small mammals in hot deserts often avoid heat via nocturnality and fossoriality, and are thought to have a limited capacity to dissipate heat using evaporative cooling. Research to date has focused on thermoregulatory responses to air temperatures (Ta) below body temperature (Tb). Consequently, the thermoregulatory performance of small mammals exposed to high Ta is poorly understood, particularly responses across geographic and seasonal scales. We quantified the seasonal thermoregulatory performance of four cricetid rodents (Neotoma albigula, Neotoma lepida, Peromyscus eremicus, Peromyscus crinitus) exposed to high Ta, at four sites in the Mojave Desert. We measured metabolism, evaporative water loss and Tb using flow-through respirometry. When exposed to Ta≥Tb, rodents showed steep increases in Tb, copious salivation and limited evaporative heat dissipation. Most individuals were only capable of maintaining Ta-Tb gradients of ∼1°, resulting in heat tolerance limits (HTLs) in the range Ta=43-45°C. All species exhibited a thermoneutral Tb of ∼35-36°C, and Tb increased to maximal levels of ∼43°C. Metabolic rates and rates of evaporative water loss increased steeply in all species as Ta approached Tb. We also observed significant increases in resting metabolism and evaporative water loss from summer to winter at Ta within and above the thermoneutral zone. In contrast, we found few differences in the thermoregulatory performance within species across sites. Our results suggest that cricetid rodents have a limited physiological capacity to cope with environmental temperatures that exceed Tb and that a rapidly warming environment may increasingly constrain their nocturnal activity.


Assuntos
Regulação da Temperatura Corporal , Roedores , Animais , Arvicolinae , Temperatura Baixa , Peromyscus , Sigmodontinae , Água
8.
Proc Natl Acad Sci U S A ; 116(43): 21609-21615, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31570585

RESUMO

Climate change threatens global biodiversity by increasing extinction risk, yet few studies have uncovered a physiological basis of climate-driven species declines. Maintaining a stable body temperature is a fundamental requirement for homeothermic animals, and water is a vital resource that facilitates thermoregulation through evaporative cooling, especially in hot environments. Here, we explore the potential for thermoregulatory costs to underlie the community collapse of birds in the Mojave Desert over the past century in response to climate change. The probability of persistence was lowest for species occupying the warmest and driest sites, which imposed the greatest cooling costs. We developed a general model of heat flux to evaluate whether water requirements for evaporative cooling contributed to species' declines by simulating thermoregulatory costs in the Mojave Desert for 50 bird species representing the range of observed declines. Bird species' declines were positively associated with climate-driven increases in water requirements for evaporative cooling and exacerbated by large body size, especially for species with animal-based diets. Species exhibiting reductions in body size across their range saved up to 14% in cooling costs and experienced less decline than species without size reductions, suggesting total cooling costs as a mechanism underlying Bergmann's rule. Reductions in body size, however, are unlikely to offset the 50 to 78% increase in cooling costs threatening desert birds from future climate change. As climate change spreads warm, dry conditions across the planet, water requirements are increasingly likely to drive population declines, providing a physiological basis for climate-driven extinctions.


Assuntos
Aves/fisiologia , Regulação da Temperatura Corporal/fisiologia , Mudança Climática , Extinção Biológica , Animais , Metabolismo Basal/fisiologia , Aves/classificação , Tamanho Corporal/fisiologia , Temperatura Corporal/fisiologia , Clima Desértico , Estados Unidos , Água/análise
9.
Proc Natl Acad Sci U S A ; 115(34): 8597-8602, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30082401

RESUMO

Climate change has caused deserts, already defined by climatic extremes, to warm and dry more rapidly than other ecoregions in the contiguous United States over the last 50 years. Desert birds persist near the edge of their physiological limits, and climate change could cause lethal dehydration and hyperthermia, leading to decline or extirpation of some species. We evaluated how desert birds have responded to climate and habitat change by resurveying historic sites throughout the Mojave Desert that were originally surveyed for avian diversity during the early 20th century by Joseph Grinnell and colleagues. We found strong evidence of an avian community in collapse. Sites lost on average 43% of their species, and occupancy probability declined significantly for 39 of 135 breeding birds. The common raven was the only native species to substantially increase across survey sites. Climate change, particularly decline in precipitation, was the most important driver of site-level persistence, while habitat change had a secondary influence. Habitat preference and diet were the two most important species traits associated with occupancy change. The presence of surface water reduced the loss of site-level richness, creating refugia. The collapse of the avian community over the past century may indicate a larger imbalance in the Mojave and provide an early warning of future ecosystem disintegration, given climate models unanimously predict an increasingly dry and hot future.


Assuntos
Aves/fisiologia , Mudança Climática , Clima Desértico , Extinção Biológica , Modelos Biológicos , Animais
10.
Ecol Lett ; 23(4): 598-606, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31981448

RESUMO

The rescue effect in metapopulations hypothesises that less isolated patches are unlikely to go extinct because recolonisation may occur between breeding seasons ('recolonisation rescue'), or immigrants may sufficiently bolster population size to prevent extinction altogether ('demographic rescue'). These mechanisms have rarely been demonstrated directly, and most evidence of the rescue effect is from relationships between isolation and extinction. We determined the frequency of recolonisation rescue for metapopulations of black rails (Laterallus jamaicensis) and Virginia rails (Rallus limicola) from occupancy surveys conducted during and between breeding seasons, and assessed the reliability of inferences about the occurrence of rescue drawn from isolation-extinction relationships, including autologistic isolation measures that corrected for unsurveyed patches and imperfect detection. Recolonisation rescue occurred at expected rates, but was elevated during periods of disturbance that resulted in non-equilibrium metapopulation dynamics. Inferences from extinction-isolation relationships were unreliable, particularly for autologistic measures and for the more vagile Virginia rail.


Assuntos
Aves , Modelos Biológicos , Animais , Ecossistema , Densidade Demográfica , Dinâmica Populacional , Reprodutibilidade dos Testes
11.
Glob Chang Biol ; 26(6): 3268-3284, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32027429

RESUMO

Transition zones between biomes, also known as ecotones, are areas of pronounced ecological change. They are primarily maintained by abiotic factors and disturbance regimes that could hinder or promote species range shifts in response to climate change. We evaluated how climate change has affected metacommunity dynamics in two adjacent biomes and across their ecotone by resurveying 106 sites that were originally surveyed for avian diversity in the early 20th century by Joseph Grinnell and colleagues. The Mojave, a warm desert, and the Great Basin, a cold desert, have distinct assemblages and meet along a contiguous, east-west boundary. Both deserts substantially warmed over the past century, but the Mojave dried while the Great Basin became wetter. We examined whether the distinctiveness and composition of desert avifaunas have changed, if species distributions shifted, and how the transition zone impacted turnover patterns. Avifauna change was characterized by (a) reduced occupancy, range contractions, and idiosyncratic species redistributions; (b) degradation of historic community structure, and increased taxonomic and climatic differentiation of the species inhabiting the two deserts; and (c) high levels of turnover at the transition zone but little range expansion of species from the warm, dry Mojave into the cooler, wetter Great Basin. Although both deserts now support more drier and warmer tolerant species, their bird communities still occupy distinct climatological space and differ significantly in climatic composition. Our results suggest a persistent transition zone between biomes contributes to limiting the redistribution of birds, and highlight the importance of understanding how transition zone dynamics impact responses to climate change.


Assuntos
Aves , Mudança Climática , Animais , Clima Desértico , Ecossistema
12.
Proc Natl Acad Sci U S A ; 114(49): 12976-12981, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29133415

RESUMO

Species respond to climate change in two dominant ways: range shifts in latitude or elevation and phenological shifts of life-history events. Range shifts are widely viewed as the principal mechanism for thermal niche tracking, and phenological shifts in birds and other consumers are widely understood as the principal mechanism for tracking temporal peaks in biotic resources. However, phenological and range shifts each present simultaneous opportunities for temperature and resource tracking, although the possible role for phenological shifts in thermal niche tracking has been widely overlooked. Using a canonical dataset of Californian bird surveys and a detectability-based approach for quantifying phenological signal, we show that Californian bird communities advanced their breeding phenology by 5-12 d over the last century. This phenological shift might track shifting resource peaks, but it also reduces average temperatures during nesting by over 1 °C, approximately the same magnitude that average temperatures have warmed over the same period. We further show that early-summer temperature anomalies are correlated with nest success in a continental-scale database of bird nests, suggesting avian thermal niches might be broadly limited by temperatures during nesting. These findings outline an adaptation surface where geographic range and breeding phenology respond jointly to constraints imposed by temperature and resource phenology. By stabilizing temperatures during nesting, phenological shifts might mitigate the need for range shifts. Global change ecology will benefit from further exploring phenological adjustment as a potential mechanism for thermal niche tracking and vice versa.


Assuntos
Aves/fisiologia , Aclimatação , Migração Animal , Animais , California , Mudança Climática , Comportamento de Nidação , Estações do Ano , Temperatura , Estados Unidos
13.
Glob Chang Biol ; 24(12): 5882-5894, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30267548

RESUMO

Climate and land-use changes are thought to be the greatest threats to biodiversity, but few studies have directly measured their simultaneous impacts on species distributions. We used a unique historic resource-early 20th-century bird surveys conducted by Joseph Grinnell and colleagues-paired with contemporary resurveys a century later to examine changes in bird distributions in California's Central Valley, one of the most intensively modified agricultural zones in the world and a region of heterogeneous climate change. We analyzed species- and community-level occupancy using multispecies occupancy models that explicitly accounted for imperfect detection probability, and developed a novel, simulation-based method to compare the relative influences of climate and land-use covariates on site-level species richness and beta diversity (measured by Jaccard similarity). Surprisingly, we show that mean occupancy, species richness and between-site similarity have remained remarkably stable over the past century. Stability in community-level metrics masked substantial changes in species composition; occupancy declines of some species were equally matched by increases in others, predominantly species with generalist or human-associated habitat preferences. Bird occupancy, richness and diversity within each era were driven most strongly by water availability (precipitation and percent water cover), indicating that both climate and land-use are important drivers of species distributions. Water availability had much stronger effects than temperature, urbanization and agricultural cover, which are typically thought to drive biodiversity decline.


Assuntos
Biodiversidade , Mudança Climática , Agricultura , Animais , Aves , California , Ecossistema , Humanos , Urbanização
14.
J Anim Ecol ; 87(3): 691-702, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29441585

RESUMO

Dispersal distances are commonly inferred from occupancy data but have rarely been validated. Estimating dispersal from occupancy data is further complicated by imperfect detection and the presence of unsurveyed patches. We compared dispersal distances inferred from seven years of occupancy data for 212 wetlands in a metapopulation of the secretive and threatened California black rail (Laterallus jamaicensis coturniculus) to distances between parent-offspring dyads identified with 16 microsatellites. We used a novel autoregressive multi-season occupancy model that accounted for both unsurveyed patches and imperfect detection to quantify patch isolation using buffer radius (BRM) and incidence function (IFM) connectivity measures at 15 scales (1-10, 15, 20, 25, and 30 km). Connectivity measures were then fit as colonization covariates in occupancy models to estimate a model-averaged dispersal distance. As predicted, colonization was more strongly related to connectivity at small spatial scales (<10 km). AIC weights were greatest at 7 km for BRM and at 4 km for IFM. Model-averaged dispersal distances (BRM = 7.46 km; IFM = 5.48 km) showed good agreement with the mean M(±SE) dispersal distance from 23 parent-offspring dyads (5.58 ± 1.92 km), indicating reasonably accurate mean dispersal distances can be inferred from occupancy data when isolation strongly affects colonization.


Assuntos
Distribuição Animal , Aves/fisiologia , Áreas Alagadas , Animais , Aves/genética , California , Feminino , Masculino , Modelos Biológicos , Análise de Regressão , Análise Espacial
15.
Glob Chang Biol ; 23(10): 4094-4105, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28449200

RESUMO

A growing body of literature seeks to explain variation in range shifts using species' ecological and life-history traits, with expectations that shifts should be greater in species with greater dispersal ability, reproductive potential, and ecological generalization. Despite strong theoretical support for species' traits as predictors of range shifts, empirical evidence from contemporary range shift studies remains limited in extent and consensus. We conducted the first comprehensive review of species' traits as predictors of range shifts, collecting results from 51 studies across multiple taxa encompassing over 11,000 species' responses for 54 assemblages of taxonomically related species occurring together in space. We used studies of assemblages that directly compared geographic distributions sampled in the 20th century prior to climate change with resurveys of distributions after contemporary climate change and then tested whether species traits accounted for heterogeneity in range shifts. We performed a formal meta-analysis on study-level effects of body size, fecundity, diet breadth, habitat breadth, and historic range limit as predictors of range shifts for a subset of 21 studies of 26 assemblages with sufficient data. Range shifts were consistent with predictions based on habitat breadth and historic range limit. However, body size, fecundity, and diet breadth showed no significant effect on range shifts across studies, and multiple studies reported significant relationships that contradicted predictions. Current understanding of species' traits as predictors of range shifts is limited, and standardized study is needed for traits to be valid indicators of vulnerability in assessments of climate change impacts.


Assuntos
Mudança Climática , Ecossistema , Animais , Tamanho Corporal , Ecologia , Reprodução
16.
Ecol Appl ; 27(1): 208-218, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052492

RESUMO

The stochastic and infrequent nature of long-distance dispersal often makes it difficult to detect. We quantified the frequency, distance, and timing of long-distance dispersal in a nonmigratory, secretive wetland bird, the California Black Rail (Laterallus jamaicensis coturniculus), between an inland and a coastal metapopulation separated by greater than 100 km. Using 15 microsatellites in conjunction with stable carbon, nitrogen, and sulfur isotopes, we classified Rails as residents of their capture population, recent migrants that dispersed to their capture population less than one year before capture, established migrants that dispersed to their capture population more than one year before capture, and seasonal migrants that dispersed away from their capture population to forage, but returned the next season. Most Rails (195 of 204, or 95.6%) were classified as residents, but we detected two established migrants that had moved >100 km more than a year before capture. Seven Rails appeared to be seasonal migrants, but comparisons of feather isotope values with isotope values from wetland soils indicated that the isotope values in the feathers of these Rails likely resulted from natural environmental variation (e.g., source element effects) rather than long-distance dispersal of individuals. Thus, these seven Rails were most likely misassigned by isotopic population assignments due to small-scale variation in the isoscape. Using genetic data in conjunction with isotopic data allowed us to not only infer the timing of long-distance dispersal events, but to successfully track long-distance movements of nonmigratory Rails between metapopulations even when environmental variation of isotopes occurred across small spatial scales.


Assuntos
Distribuição Animal , Aves/fisiologia , Áreas Alagadas , Animais , Proteínas Aviárias/análise , Aves/genética , California , Isótopos de Carbono/análise , Repetições de Microssatélites , Isótopos de Nitrogênio/análise , Dinâmica Populacional , Estações do Ano , Isótopos de Enxofre/análise
17.
J Anim Ecol ; 86(1): 75-87, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27625075

RESUMO

Adult individuals that do not breed in a given year occur in a wide range of natural populations. However, such nonbreeders are often ignored in theoretical and empirical population studies, limiting our knowledge of how nonbreeders affect realized and estimated population dynamics and potentially impeding projection of deterministic and stochastic population growth rates. We present and analyse a general modelling framework for systems where breeders and nonbreeders differ in key demographic rates, incorporating different forms of nonbreeding, different life histories and frequency-dependent effects of nonbreeders on demographic rates of breeders. Comparisons of estimates of deterministic population growth rate, λ, and demographic variance, σd2, from models with and without distinct nonbreeder classes show that models that do not explicitly incorporate nonbreeders give upwardly biased estimates of σd2, particularly when the equilibrium ratio of nonbreeders to breeders, Nnb∗/Nb∗, is high. Estimates of λ from empirical observations of breeders only are substantially inflated when individuals frequently re-enter the breeding population after periods of nonbreeding. Sensitivity analyses of diverse parameterizations of our model framework, with and without negative frequency-dependent effects of nonbreeders on breeder demographic rates, show how changes in demographic rates of breeders vs. nonbreeders differentially affect λ. In particular, λ is most sensitive to nonbreeder parameters in long-lived species, when Nnb∗/Nb∗>0, and when individuals are unlikely to breed at several consecutive time steps. Our results demonstrate that failing to account for nonbreeders in population studies can obscure low population growth rates that should cause management concern. Quantifying the size and demography of the nonbreeding section of populations and modelling appropriate demographic structuring is therefore essential to evaluate nonbreeders' influence on deterministic and stochastic population dynamics.


Assuntos
Características de História de Vida , Modelos Biológicos , Reprodução , Animais , Dinâmica Populacional , Crescimento Demográfico
18.
Proc Natl Acad Sci U S A ; 110(38): 15365-70, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003118

RESUMO

Studies of evolution in wild populations often find that the heritable phenotypic traits of individuals producing the most offspring do not increase proportionally in the population. This paradox may arise when phenotypic traits influence both fecundity and viability and when there is a tradeoff between these fitness components, leading to opposing selection. Such tradeoffs are the foundation of life history theory, but they are rarely investigated in selection studies. Timing of breeding is a classic example of a heritable trait under directional selection that does not result in an evolutionary response. Using a 22-y study of a tropical parrot, we show that opposing viability and fecundity selection on the timing of breeding is common and affects optimal breeding date, defined by maximization of fitness. After accounting for sampling error, the directions of viability (positive) and fecundity (negative) selection were consistent, but the magnitude of selection fluctuated among years. Environmental conditions (rainfall and breeding density) primarily and breeding experience secondarily modified selection, shifting optimal timing among individuals and years. In contrast to other studies, viability selection was as strong as fecundity selection, late-born juveniles had greater survival than early-born juveniles, and breeding later in the year increased fitness under opposing selection. Our findings provide support for life history tradeoffs influencing selection on phenotypic traits, highlight the need to unify selection and life history theory, and illustrate the importance of monitoring survival as well as reproduction for understanding phenological responses to climate change.


Assuntos
Meio Ambiente , Modelos Biológicos , Papagaios/genética , Fenótipo , Seleção Genética/genética , Comportamento Sexual Animal/fisiologia , Animais , Aptidão Genética , Papagaios/fisiologia , Reprodução/fisiologia , Venezuela
19.
Proc Biol Sci ; 282(1799): 20141857, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25621330

RESUMO

Resurveys of historical collecting localities have revealed range shifts, primarily leading edge expansions, which have been attributed to global warming. However, there have been few spatially replicated community-scale resurveys testing whether species' responses are spatially consistent. Here we repeated early twentieth century surveys of small mammals along elevational gradients in northern, central and southern regions of montane California. Of the 34 species we analysed, 25 shifted their ranges upslope or downslope in at least one region. However, two-thirds of ranges in the three regions remained stable at one or both elevational limits and none of the 22 species found in all three regions shifted both their upper and lower limits in the same direction in all regions. When shifts occurred, high-elevation species typically contracted their lower limits upslope, whereas low-elevation species had heterogeneous responses. For high-elevation species, site-specific change in temperature better predicted the direction of shifts than change in precipitation, whereas the direction of shifts by low-elevation species was unpredictable by temperature or precipitation. While our results support previous findings of primarily upslope shifts in montane species, they also highlight the degree to which the responses of individual species vary across geographically replicated landscapes.


Assuntos
Mudança Climática , Mamíferos/fisiologia , Animais , Biodiversidade , California , Ecossistema , Dinâmica Populacional
20.
Conserv Biol ; 29(3): 755-64, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25494697

RESUMO

We examined how ecological and evolutionary (eco-evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco-evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco-evo PVA using individual-based models with individual-level genotype tracking and dynamic genotype-phenotype mapping to model emergent population-level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco-evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence.


Assuntos
Conservação dos Recursos Naturais/métodos , Modelos Genéticos , Animais , Evolução Biológica , Mudança Climática , Ecologia , Genótipo , Invertebrados/genética , Fenótipo , Plantas/genética , Dinâmica Populacional , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa