Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(36): 22281-22292, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32843340

RESUMO

Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth-ocean-atmosphere dynamic exchange of elements. The ratios' dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from ∼4.40 to 6.40 mmol:mol and ∼6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (∼4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (∼7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios' variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect.

2.
Ecotoxicol Environ Saf ; 262: 115116, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37315364

RESUMO

During the 20th century, thousands of tons of munitions containing organoarsenic chemical warfare agents (CWAs) were dumped into oceans, seas and inland waters around the world. As a result, organoarsenic CWAs continue to leak from corroding munitions into sediments and their environmental concentrations are expected to peak over the next few decades. There remains, however, a lack of knowledge about their potential toxicity to aquatic vertebrates, such as fish. The aim of this study was to fill in this gap in research, by investigating the acute toxicity of organoarsenic CWAs on fish embryos, using the model species, Danio rerio. To estimate the acute toxicity thresholds of organoarsenic CWAs (Clark I, Adamsite, PDCA), a CWA-related compound (TPA), as well as four organoarsenic CWA degradation products (Clark I[ox], Adamsite[ox], PDCA[ox], TPA[ox]), standardized tests were performed following the OECD no. 236 Fish Embryo Acute Toxicity Test guidelines. Additionally, the detoxification response in D. rerio embryos was investigated by analysing the mRNA expression of five genes encoding antioxidant enzymes (CAT, SOD, GPx, GR and GST). During the 96 h of exposure, organoarsenic CWAs induced lethal effects in D. rerio embryos at very low concentrations (classified as 1st category pollutants according to GHS categorization), and were therefore deemed to be serious environmental hazards. Although TPA and the four CWA degradation products caused no acute toxicity even at their maximum solubility, the transcription of antioxidant-related genes was altered upon exposure to these compounds, indicating the need for further testing for chronic toxicity. Incorporating the results of this study into ecological risk assessments will provide a more accurate prediction of the environmental hazards posed by CWA-related organoarsenicals.

3.
J Environ Sci (China) ; 68: 55-64, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29908745

RESUMO

Mercury (Hg) is a neurotoxic metal which can enter into the human organism mainly by fish consumption, skin and transpiration. In the coastal zone of the southern Baltic Sea, rivers are the main source of Hg. The Polish region represents the largest proportion of the Baltic Sea catchment and this research included four rivers of the Baltic watershed: the Reda, Zagórska Struga, Kacza and Gizdepka. The samples were collected in the years 2011-2013. Total and particulate Hg concentration in these rivers were measured. Due to intensive rain, deposited mercury on the catchment area was washed out into the riverines water and introduced into the Baltic Sea. Consequently, the load of Hg increased three times. Additionally, the intensive dry atmospheric deposition during heating season caused the increase of the concentration of particulate Hg in the river water even by 85%. The research confirmed the role of the river flow magnitude in the load of mercury introduced into the sea by rivers. Moreover, a high variability of mercury concentration was connected to the additional sources such as the chemicals containing Hg and no municipal sewage system. The analysis of stable isotopes indicated that the SPM contained terrestrial organic matter; however, there was no clear correlation between Hgtot, Corg and Ntot concentrations and δ13C, δ15N, C/N in particulate matter.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Poluentes Químicos da Água/análise , Clima , Polônia , Chuva , Rios/química , Poluição Química da Água/estatística & dados numéricos
4.
Environ Monit Assess ; 187(8): 498, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26160740

RESUMO

Methylmercury (MeHg) is the most bioavailable and toxic mercury species in the marine environment. MeHg concentration levels, methylation rates leading to MeHg formation, and methylation index (MI) are all used to assess the compliance of mercury to be methylated in the marine sedimentary environment. This paper reports on the works conducted on the MI upgrade. This paper proposes a new formula for calculating MI. Apart from labile mercury(II) and organic matter, it includes redox potential and abundance of sulfur-reducing bacteria (SRB), both essential factors for MeHg generation. The obtained MI is validated against actual sedimentary MeHg concentrations proving the potential usefulness of MI as a factor characterizing status of sedimentary environment regarding possible occurrence of MeHg. Moreover, values of the methylation index in particular regions show that MI values correspond well to environmental conditions in those areas. The values calculated correlate well with MeHg concentrations; however, the correlation coefficients vary between different regions. This has been attributed to the lack of empirical coefficients. Thus, MI could be used as a characteristic of the sedimentary environment indicating the potential presence of MeHg. It could also be used in methylation rate modeling, provided that empirical constants are applied to improve model performance.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Mercúrio/análise , Compostos de Metilmercúrio/análise , Modelos Teóricos , Sedimentos Geológicos/microbiologia , Mercúrio/química , Metilação , Compostos de Metilmercúrio/química , Oceanos e Mares , Água do Mar/química , Svalbard
5.
Ambio ; 43(7): 871-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24570212

RESUMO

Wet deposition is an important source of metals to the sea. The temporal variability of Hg concentrations in precipitation, and the impact of air masses of different origins over the Polish coastal zone were assessed. Samples of precipitation were collected (August 2008-May 2009) at an urbanized coastal station in Poland. Hg analyses were conducted using CVAFS. These were the first measurements of Hg concentration in precipitation obtained in the Polish coastal zone. Since Poland was identified as the biggest emitter of Hg to the Baltic, these data are very important. In the heating and non-heating season, Hg concentrations in precipitation were similar. Hg wet deposition flux dominated in summer, when the production of biomass in the aquatic system was able to actively adsorb Hg. Input of metal to the sea was attributed to regional and distant sources. Maritime air masses, through transformation of Hg(0), were an essential vector of mercury in precipitation.


Assuntos
Mercúrio/química , Chuva/química , Oceanos e Mares , Polônia , Estações do Ano , Fatores de Tempo , População Urbana
6.
Environ Monit Assess ; 186(11): 7593-604, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25085426

RESUMO

In Mediterranean seas and coastal zones, rivers can be the main source of mercury (Hg). Catchment management therefore affects the load of Hg reaching the sea with surface runoff. The major freshwater inflows to the Baltic Sea consist of large rivers. However, their systems are complex and identification of factors affecting the outflow of Hg from its catchments is difficult. For this reason, a study into the impact of watershed land use and season on mercury biogeochemistry and transport in rivers was performed along two small rivers which may be considered typical of the southern Baltic region. Neither of these rivers are currently impacted by industrial effluents, thus allowing assessment of the influence of catchment terrain and season on Hg geochemistry. The study was performed between June 2008 and May 2009 at 13 sampling points situated at different terrain types within the catchments (forest, wetland, agriculture and urban). Hg analyses were conducted by CVAFS. Arable land erosion was found to be an important source of Hg to the aquatic system, similar to urban areas. Furthermore, inflows of untreated storm water discharge resulted in a fivefold increase of Hg concentration in the rivers. The highest Hg concentration in the urban runoff was observed with the greatest amount of precipitation during summer. Moderate rainfalls enhance the inflow of bioavailable dissolved mercury into water bodies. Despite the lack of industrial effluents entering the rivers directly, the sub-catchments with anthropogenic land use were important sources of Hg in the rivers. This was caused by elution of metal, deposited in soils over the past decades, into the rivers. The obtained results are especially important in the light of recent environmental conscience regulations, enforcing the decrease of pollution by Baltic countries.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Rios/química , Poluentes Químicos da Água/análise , Oceanos e Mares , Estações do Ano
7.
Mar Pollut Bull ; 202: 116363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621354

RESUMO

Planktonic organisms, which have direct contact with water, serve as the entry point for mercury (Hg), into the marine food web, impacting its levels in higher organisms, including fish, mammals, and humans who consume seafood. This study provides insights into the distribution and behavior of Hg within the Baltic Sea, specifically the Gulf of Gdansk, focusing on pelagic primary producers and consumers. Phytoplankton Hg levels were primarily influenced by its concentrations in water, while Hg concentrations in zooplankton resulted from dietary exposure through suspended particulate matter and phytoplankton consumption. Hg uptake by planktonic organisms, particularly phytoplankton, was highly efficient, with Hg concentrations four orders of magnitude higher than those in the surrounding water. However, unlike biomagnification of Hg between SPM and zooplankton, biomagnification between zooplankton and phytoplankton was not apparent, likely due to the low trophic position and small size of primary consumers, high Hg elimination rates, and limited absorption.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Mercúrio , Fitoplâncton , Poluentes Químicos da Água , Zooplâncton , Mercúrio/análise , Mercúrio/metabolismo , Poluentes Químicos da Água/análise , Animais , Oceanos e Mares
8.
Sci Total Environ ; 951: 175455, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39142412

RESUMO

The Baltic Sea is a severely disturbed marine ecosystem previously used as a dumping ground for chemical warfare agents (CWA), which are now known to enter its food web. We have performed a modelling exercise using a calibrated and validated Central Baltic Ecopath with Ecosim (EwE) model to recreate the potential environmental pathways of the infamous Clark I (diphenylchlorarsine). Observations from modelling timestamps covering recent times correspond with in situ detections in sediments and Atlantic cod (Gadus morhua). Under applied modelling conditions and scenarios, there is an active transfer of Clark I from sediments through the Baltic Sea food-web. According to our results, Clark I bioaccumulates within the Baltic Sea food web exclusively throughout the detritus-based food chain. The EwE model for the Central Baltic Sea also allows the simulation of changes in the food web under multiple anthropogenic stressors and management efforts, including recommendations from the Helsinki Commission Baltic Sea Action Plan (HELCOM BSAP). Among all investigated scentarios and factors, the commercial fishing is the most impactful on Clark I accumulation rate and contamination transfer within the Baltic Sea food web. The study indicates the need to extend the existing monitoring approach by adding additional species representing a broader range of ecological niches and tiers within the food chains. From the environmental perspective, the remediation of Chemical Weapons by removal should be considered as part of the integrated management of the Baltic Sea.


Assuntos
Substâncias para a Guerra Química , Monitoramento Ambiental , Cadeia Alimentar , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Substâncias para a Guerra Química/análise , Animais , Clima , Oceanos e Mares , Gadus morhua , Países Bálticos
9.
Sci Total Environ ; 905: 167239, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37742970

RESUMO

The Antarctic is the most isolated region in the world; nevertheless, it has not avoided the negative impact of human activity, including the inflow of toxic mercury (Hg). Hg deposited in the Antarctic marine environment can be bioavailable and accumulate in the food web, reaching elevated concentrations in high-trophic-level biota, especially if methylated. Zooplankton, together with phytoplankton, are critical for the transport of pollutants, including Hg to higher trophic levels. For the Southern Ocean ecosystem, one of the key zooplankton components is the Antarctic krill Euphausia superba, the smaller euphausiid Thysanoessa macrura, and the amphipod Themisto gaudichaudii - a crucial food source for most predatory fish, birds, and mammals. The main goal of this study was to determine the Hg burden, as well as the distribution of different Hg forms, in these dominant Antarctic planktonic crustaceans. The results showed that the highest concentrations of Hg were found in T. gaudichaudii, a typically predatory taxon. Most of the Hg in the tested crustaceans was labile and potentially bioavailable for planktivorous organisms, with the most dangerous methylmercury (MeHg) accounting for an average of 16 % of the total mercury. Elevated Hg concentrations were observed close to the land, which is influenced by the proximity to penguin and pinniped colonies. In areas near the shore, volcanic activity might be a possible cause of the increase in mercury sulfide (HgS) content. The total Hg concentration increased with the trophic position and ontogenetic stage of predation, specific to adult organisms. In contrast, the proportion of MeHg decreased with age, indicating more efficient demethylation or elimination. The Hg magnification kinetics in the study area were relatively high, which may be related to climate-change induced alterations of the Antarctic ecosystem: additional food sources and reshaped trophic structure.


Assuntos
Euphausiacea , Mercúrio , Compostos de Metilmercúrio , Spheniscidae , Poluentes Químicos da Água , Humanos , Animais , Mercúrio/análise , Zooplâncton , Ecossistema , Cadeia Alimentar , Regiões Antárticas , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Mamíferos
10.
Sci Rep ; 13(1): 19923, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964081

RESUMO

Armed conflicts have, in addition to severe impacts on human lives and infrastructure, also impacts on the environment, which needs to be assessed and documented. On September the 26th 2022, unknown perpetrators deliberately ruptured the two gas pipelines Nord Stream 1 and 2 with four coordinated explosions near a major chemical munition dump site near the Danish island of Bornholm in the Baltic Sea. While the massive release of natural gas into atmosphere raised serious concerns concerning the contribution to climate change-this paper assesses the overlooked direct impact of the explosions on the marine ecosystem. Seals and porpoises within a radius of four km would be at high risk of being killed by the shockwave, while temporary impact on hearing would be expected up to 50 km away. As the Baltic Proper population of harbour porpoises (Phocoena phocoena) is critically endangered, the loss or serious injury of even a single individual is considered a significant impact on the population. The rupture moreover resulted in the resuspension of 250000 metric tons of heavily contaminated sediment from deep-sea sedimentary basin for over a week, resulting in unacceptable toxicological risks towards fish and other biota in 11 km3 water in the area for more than a month.


Assuntos
Phocoena , Focas Verdadeiras , Animais , Atmosfera , Ecossistema , Rios
11.
Mar Pollut Bull ; 184: 114115, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36137440

RESUMO

Polar regions are an important part of the global mercury cycle and interesting study sites due to different possible mercury sources. The full understanding of mercury transformations in the Arctic is difficult because this region is the systems in transition -where the effects of the global climate change are the most prominent. Benthic organisms can be valuable bioindicators of heavy metal contamination. In July 2018, selected benthic organisms: macroalgae, brittle stars, sea urchins, gastropods, and starfish were collected in Isfjorden, Spitsbergen. Two of the sampling stations were located inside the fjord system and one at the entrance to the fjord. The results showed that the starfish were the most contaminated with mercury. Total mercury concentrations in these organisms were at least 10 times higher than in other organisms. However, they effectively deal with mercury by transporting it to hard tissue. The dominant form of mercury was the labile form.


Assuntos
Mercúrio , Metais Pesados , Mercúrio/análise , Svalbard , Biomarcadores Ambientais , Estuários , Metais Pesados/análise , Regiões Árticas , Monitoramento Ambiental
12.
Toxics ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35622620

RESUMO

Several hundred thousand tonnes of munitions containing chemical warfare agents (CWAs) are lying on the seafloor worldwide. CWAs have started leaking from corroded munitions, and their presence in the environment and in organisms inhabiting dump sites has been detected. The presence of CWAs in the water negatively affects fish, macrobenthos and free-living bacteria. It can be expected that the presence of CWAs would also affect the gut-associated bacteria in fish, which are vital for their condition. The main aim of this study was to test if the microbiota of cod collected in the Baltic Bornholm Deep (highly polluted with CWAs) is dysregulated. To investigate this, we conducted metagenomic studies based on 16S rRNA gene sequencing. We found that the microbiota of cod inhabiting the dump site was significantly less taxonomically diverse compared to those from a non-polluted reference site. Moreover, taxa associated with fish diseases (e.g., Vibrionaceae, Aeromonadaceae) were more prevalent, and probiotic taxa (e.g., Actinobacteriota, Rhodobacteraceae) were less frequent in the guts of individuals from the dump site, than those from the reference site. The differences in vulnerability of various bacterial taxa inhabiting cod gastrointestinal tracts to CWAs were hypothesised to be responsible for the observed microbiota dysregulation.

13.
Environ Pollut ; 315: 120394, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228857

RESUMO

Since the 1970s, the amount of aquatic plants and algae debris, called beach wrack (BW), has increased along the shores of industrialised regions. The strong ability of primary producers to accumulate pollutants can potentially result in their deposition on the beach along with the BW. Despite that, the fate and impact of such pollutants on sandy beach ecosystems have not been investigated so far. This study examines the fate of neurotoxic mercury and its labile and stable fractions in BW on sandy beaches of the Puck Bay (Baltic Sea). In addition to BW, beach sediments and wrack-associated macrofauna were also analysed. Rough estimations showed that Puck Bay beaches (58.8 km) may be a temporary storage of 0.2-0.5 kg of mercury, deposited on them along with the BW annually. A large proportion of Hg (89 ± 16%) in a BW was labile and potentially bioavailable. The contribution of Hg fractions in the BW was conditioned by the degree of its decomposition (molar C:N:P ratio). With the progressive degradation of BW, a decrease in the contribution of Hg adsorbed on its surface with a simultaneous increase in the proportion of adsorbed (intracellular), mercury was observed. BW accumulation decreased oxygen content and redox potential and increased methylmercury content in underlying sediments, indicating methylation. Hg concentrations in the studied fauna were up to 4 times higher than in the BW. The highest values occurred in a predatory sand bear spider and the lowest in a herbivorous sand hopper. Regardless of trophic position, most of Hg (92-95%) occurred as an absorbed fraction, which indicates about a 30% increase in relation to its share of BW. These findings suggest the significant role of BW as a mercury carrier in a land-sea interface and increased exposure of beach communities to the adverse effects of mercury in coastal ecosystems.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Monitoramento Ambiental , Ecossistema , Poluentes Químicos da Água/análise , Peixes
14.
Materials (Basel) ; 14(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947283

RESUMO

Every year, huge amounts of bottom sediments are extracted worldwide, which need to be disposed. The recycling of bottom sediments for soil fertilization is in line with the long-promoted circular economy policy and enables the use of micro and macronutrients accumulated in sediments for soil fertilization. When considering potential agricultural reuse of the dredge sediments, the first necessary step should be to analyze whether the heavy metal content meets the obligatory criteria. Then, the contents of valuable elements required for plant growth and their ratios should be assessed. In this study, the content of nitrogen, organic carbon, phosphorus, and potassium was tested and iron, sulfur, calcium, and magnesium were also analyzed along vertical profiles of sediments extracted from four urban retention tanks in Gdansk (Poland). The sediments were indicated to have a low content of nutrients (Ntot 0.01-0.52%, Corg 0.1-8.4%, P2O5 0.00-0.65%, K 0.0-1.0%), while being quite rich in Fe and S (0.2-3.3%, 0.0-2.5%, respectively). The C/N ratio changed in the range of 17.4-28.4, which proved good nitrogen availability for plants. The mean values of the Fe/P ratio were above 2.0, which confirms that phosphorus in the sediments would be available to the plants in the form of iron phosphate. To summarize, the bottom sediments from municipal retention reservoirs are not a perfect material for soil fertilization, but they are a free waste material which, when enriched with little cost, can be a good fertilizer. Future research should focus on cultivation experiments with the use of sediments enriched with N, P, Corg.

15.
Aquat Toxicol ; 230: 105693, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33310671

RESUMO

Sea dumping of chemical warfare (CW) took place worldwide during the 20th century. Submerged CW included metal bombs and casings that have been exposed for 50-100 years of corrosion and are now known to be leaking. Therefore, the arsenic-based chemical warfare agents (CWAs), pose a potential threat to the marine ecosystems. The aim of this research was to support a need for real-data measurements for accurate risk assessments and categorization of threats originating from submerged CWAs. This has been achieved by providing a broad insight into arsenic-based CWAs acute toxicity in aquatic ecosystems. Standard tests were performed to provide a solid foundation for acute aquatic toxicity threshold estimations of CWA: Lewisite, Adamsite, Clark I, phenyldichloroarsine (PDCA), CWA-related compounds: TPA, arsenic trichloride and four arsenic-based CWA degradation products. Despite their low solubility, during the 48 h exposure, all CWA caused highly negative effects on Daphnia magna. PDCA was very toxic with 48 h D. magna LC50 at 0.36 µg × L-1 and Lewisite with EC50 at 3.2 µg × L-1. Concentrations at which no immobilization effects were observed were slightly above the analytical Limits of Detection (LOD) and Quantification (LOQ). More water-soluble CWA degradation products showed no effects at concentrations up to 100 mg × L-1.


Assuntos
Arsênio/toxicidade , Substâncias para a Guerra Química/toxicidade , Daphnia/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Arsênio/análise , Arsenicais/análise , Substâncias para a Guerra Química/análise , Cloretos/análise , Ecossistema , Dose Letal Mediana , Limite de Detecção , Água do Mar/química , Testes de Toxicidade Aguda , Poluentes Químicos da Água/análise
16.
J Environ Sci (China) ; 22(8): 1144-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21179950

RESUMO

The aim of this study was to characterize mercury (Hg) contamination in the coastal waters of the Southern Baltic Sea, and to investigate transformations of Hg in the initial links of the marine food chain. Concentrations of Hg in water, particulate matter, plankton and macrophytes at various stations in the coastal zone (a bay with restricted water exchange, near an industrial city, river mouths, and the open sea) were measured in 2006-2008. Hg concentrations observed in the Southern Baltic varied greatly, showing the highest average values in all environmental compartments near the river mouths. In shallow, sheltered parts of the gulf, where water exchange is restricted, Hg concentrations in the water and in macrophytes were elevated relative to those in the coastal zone of the deeper part of the bay and in the open Baltic. Distance to the river mouth, terrestrial runoff, and quantity and quality of organic matter were more important than seasonal variations in controlling Hg and HgSPM concentrations in water samples. Mercury concentrations in the surface microlayer at the air/sea interface were over 10 times higher than those in the bulk surface water. Concentrations of Hg in macrophytes in the winter were significantly higher than those in the warm seasons (spring, summer, autumn). This was probably the combined effect of higher availability of Hg in porewaters and leaf growth inhibition.


Assuntos
Mercúrio/química , Poluentes Químicos da Água/química , Países Bálticos , Ecossistema , Monitoramento Ambiental , Oceanos e Mares
17.
Mar Environ Res ; 162: 105189, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33126113

RESUMO

Munitions introduced to the sea during military activities, including naval combat and mine warfare represent only a fraction of military material present in seas and oceans. Huge amounts of obsolete conventional munitions and chemical munitions were dumped to the sea until 1975, when London convention put a stop of sea dumping. Such munitions are a threat for maritime workers, but also for environment. Corroding shells release toxic degradation products to sediments and bottom water, and unlike other contaminants, they cannot be reduced by land measures. Only removal of source can reduce the contamination. Much work has been done in the last decade, and mechanisms of toxicity and bioaccumulation are being recognized, as well as transport and spreading mechanisms. The full assessment of the risk associated with munitions now depends on broad application of developed techniques.


Assuntos
Poluentes Químicos da Água , Sedimentos Geológicos , Humanos , Oceanos e Mares , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Mar Environ Res ; 162: 105158, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33065518

RESUMO

Methylmercury (MeHg) is the most toxic and dangerous form of mercury occurring in the environment. MeHg is highly bioaccumulative in organisms and undergoes biomagnification via the food chain. In the Baltic Sea munition dumpsites, methylmercury can be formed from mercury fulminate contained in primary explosives, as environmental conditions there favour methylation. MeHg in analysed sediments ranged from 19 to 2362 pg g-1d.w., the concentration of mercury (HgTOT) ranged from 4 to 294 ng g-1 d.w., and the values of MeHg/Hg ratio ranged from 0.1 to 2.0%. The obtained results confirmed that munition dumpsites are a source of mercury. The concentration of MeHg is elevated in a wider area than immediately next to dumped munitions. Presented results suggest that physical processes responsible for sediment and near-bottom water movement are diffusing MeHg signal, making munition dumpsites rather a diffuse source of MeHg than a number of point sources associated with particular munitions.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Mercúrio/análise , Poluentes Químicos da Água/análise
19.
Sci Rep ; 10(1): 7344, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355245

RESUMO

The end-Devonian global Hangenberg event (359 Ma) is among the most devastating mass extinction events in Earth's history, albeit not one of the "Big Five". This extinction is linked to worldwide anoxia caused by global climatic changes. These changes could have been driven by astronomical forcing and volcanic cataclysm, but ultimate causes of the extinction still remain unclear. Here we report anomalously high mercury (Hg) concentration in marine deposits encompassing the Hangenberg event from Italy and Austria (Carnic Alps). The Hangenberg event recorded in the sections investigated can be here interpreted as caused by extensive volcanic activity of large igneous provinces (LIPs), arc volcanism and/or hydrothermal activity. Our results (very large Hg anomalies) imply volcanism as a most possible cause of the Hangenberg event, similar to other first order mass extinctions during the Phanerozoic. For the first time we show that apart from anoxia, proximate kill mechanism of aquatic life during the event could have been methylmercury formed by biomethylation of a volcanically derived, huge concentration of inorganic Hg supplied to the ocean. Methylmercury as a much more toxic Hg form, potentially could have had a devastating impact on end-Devonian biodiversity, causing the extinction of many pelagic species.

20.
Mar Environ Res ; 161: 105077, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32853855

RESUMO

Sulphur mustard (HD) was the most widely produced chemical warfare agent (CWA) in the history of chemical warfare (CW). Simultaneously, the loads of HD account as by far the largest fraction of the sea-dumped CW. Nowadays its presence in the marine ecosystems recognized as a serious threat for marine users and maritime industries. Although, during over a decade of research much has been done to assess the environmental threats linked with underwater chemical munitions. There are, however, essential gaps in scientific knowledge including scarce information about the aquatic toxicity thresholds of HD and its degradation products. Standardized biotests were performed according to the Organisation for Economic Co-operation and Development (OECD) Test No. 202: Daphnia sp. Acute Immobilisation Test guidelines. Obtained results provide a solid foundation for comparison and categorisation of threats of HD and its degradation products. With the D. magna LC50 aquatic acute toxicity threshold at as low as 224 ± 12 µg × L-1, 1,2,5-trithiepane is very toxic, being one of the most toxic CWA degradation products that have been investigated up to date. It exhibits stronger effects than 1,4,5-oxadithiepane and diluted HD that turn out to be toxic. In total, the toxicity of 7 compounds has been estimated. Whenever possible, toxicity thresholds were compared with previously existing data originating from different biotests and mathematical modelling.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Poluentes Químicos da Água , Animais , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/toxicidade , Daphnia , Ecossistema , Dose Letal Mediana , Gás de Mostarda/análise , Gás de Mostarda/toxicidade , Testes de Toxicidade Aguda , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa