Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroscience ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936459

RESUMO

Identified 40 years ago, the metabotropic glutamate (mGlu) receptors play key roles in modulating many synapses in the brain, and are still considered as important drug targets to treat various brain diseases. Eight genes encoding mGlu subunits have been identified. They code for complex receptors composed of a large extracellular domain where glutamate binds, connected to a G protein activating membrane domain. They are covalently linked dimers, a quaternary structure needed for their activation by glutamate. For many years they have only been considered as homodimers, then limiting the number of mGlu receptors to 8 subtypes composed of twice the same subunit. Twelve years ago, mGlu subunits were shown to also form heterodimers with specific subunits combinations, increasing the family up to 19 different potential dimeric receptors. Since then, a number of studies brought evidence for the existence of such heterodimers in the brain, through various approaches. Structural and molecular dynamic studies helped understand their peculiar activation process. The present review summarizes the approaches used to study their activation process and their pharmacological properties and to demonstrate their existence in vivo. We will highlight how the existence of mGlu heterodimers revolutionizes the mGlu receptor field, opening new possibilities for therapeutic intervention for brain diseases. As illustrated by the number of possible mGlu heterodimers, this study will highlight the need for further research to fully understand their role in physiological and pathological conditions, and to develop more specific therapeutic tools.

2.
Mater Sci Eng C Mater Biol Appl ; 118: 111525, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255078

RESUMO

Synthetic polymers are widely employed for bone tissue engineering due to their tunable physical properties and biocompatibility. Inherently, most of these polymers display poor antimicrobial properties. Infection at the site of implantation is a major cause for failure or delay in bone healing process and the development of antimicrobial polymers is highly desired. In this study, silver nanoparticles (AgNps) were synthesized in polycaprolactone (PCL) solution by in-situ reduction and further extruded into PCL/AgNps filaments. Customized 3D structures were fabricated using the PCL/AgNps filaments through 3D printing technique. As demonstrated by scanning electron microscopy, the 3D printed scaffolds exhibited interconnected porous structures. Furthermore, X-ray photoelectron spectroscopy analysis revealed the reduction of silver ions. Transmission electron microscopy along with energy-dispersive X-ray spectroscopy analysis confirmed the formation of silver nanoparticles throughout the PCL matrix. In vitro enzymatic degradation studies showed that the PCL/AgNps scaffolds displayed 80% degradation in 20 days. The scaffolds were cytocompatible, as assessed using hFOB cells and their antibacterial activity was demonstrated on Escherichia coli. Due to their interconnected porous structure, mechanical and antibacterial properties, these cytocompatible multifunctional 3D printed PCL/AgNps scaffolds appear highly suitable for bone tissue engineering.


Assuntos
Nanopartículas Metálicas , Engenharia Tecidual , Antibacterianos/farmacologia , Poliésteres , Impressão Tridimensional , Prata/farmacologia , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa